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1 Introduction

Wealth inequality in the United States and many other countries is large and growing (Saez
and Zucman, 2014; Jones, 2015). An extensive literature attempts to explain wealth inequal-
ity through variation in the earnings process, entrepreneurial talent, bequests, risk aversion
and time-discounting. While these factors can generate a skewed wealth distribution, they
fail to reproduce other key empirical features including the thickness of the tail.1

A new wave of theoretical work argues that cross-sectional heterogeneity in the returns
to wealth is required to match the basic features of the wealth distribution (Benhabib,
Bisin, and Zhu, 2011; Benhabib and Bisin, 2016). This argument is supported by a growing
empirical literature that finds substantial heterogeneity in such returns (Fagereng et al.,
2016; Benhabib, Bisin, and Luo, 2015; Bach, Thiemann, and Zucco, 2015). Much of this
heterogeneity persists over time, with some individuals earning consistently higher returns
to wealth (Fagereng et al., 2016). Despite the theoretical and empirical importance of this
phenomenon, little is known about what drives such persistence. However, policy responses
to wealth inequality are likely to have different effects depending on the mechanisms through
which persistent heterogeneity operates — for example, whether this heterogeneity comes
from variation in preferences (e.g. risk aversion) or variation in skills (e.g. financial decision-
making)

In this paper, we identify a biological source of wealth inequality: genetic ability re-
lated to human capital accumulation. In particular, we show that the same observed genetic
markers that predict educational attainment also predict household wealth in the Health and
Retirement Study (HRS). Importantly, this relationship is not merely driven by earnings or
other income flows. Rather, the estimated association between genes and wealth is econom-
ically large and statistically significant after conditioning on education, earnings, financial
bequests and a host of other controls. Observing genetic variants implicated in wealth accu-
mulation allows us to directly assess the mechanisms through which they operate and how
they interact with policy-relevant environments. We provide novel evidence that the genetic
endowments we study are linked to financial decision-making (in particular stock market
participation), financial literacy, and probabilistic thinking.

Our results provide a genetic micro-foundation for persistent differences in returns to
wealth needed to match existing wealth distributions. Biological heterogeneity may thus
drive part of the association between wealth and the returns to wealth. Since information

1Some models can match the thickness of the tail, but only under implausible assumptions about the
level of heterogeneity in the earnings process. For example, Kindermann and Krueger (2014) require the top
0.25% of earners to earn 400-600 times more than the median earner. Empirically, this number is closer to
33.

1



and decision-making are implicated in this process, relatively straightforward policy tools,
such as stronger public pension schemes, may help to reduce inequality and poverty among
the elderly. This is especially relevant given the dramatic shift away from defined benefit
retirement plans towards options that give individuals greater financial autonomy (Poterba
and Wise, 1998).

To measure ability endowments for human capital, we follow recent advances in behav-
ioral genetics that have led to the identification of specific genetic markers that predict
educational attainment. Results from the state of the art in this literature (Okbay et al.,
2016) allow for the construction of a polygenic score—an index of these genetic markers—
that robustly predicts education in the HRS (Papageorge and Thom, 2016). To explain the
advantage of using this observed measure of genetic ability, it is useful to contrast our work
with earlier studies linking ability endowments to economic behaviors that affect wealth.
There are three approaches. One way is to use proxies for ability, such as cognitive test
scores. However, since test scores are responsive to parental investments, their use may mis-
attribute the importance of household resources to individual abilities. Another approach is
to treat persistent factors as unobserved heterogeneity. While much of the work on persistent
returns has done this, such an approach makes it difficult to understand the mechanisms
that drive persistence.

More closely related to what we do, results from twins studies have shown that genetic
factors play a non-trivial role in explaining saving behavior and portfolio decisions (Cronqvist
and Siegel, 2014, 2015; Cesarini et al., 2010).2 However, it is generally difficult to learn about
how specific genetic factors operate using twins data. For one, twins studies do not identify
which particular markers matter for wealth, nor do they allow one to measure these genetic
endowments at the individual-level. This means that analysis of their function is limited to
variance decompositions related to mechanisms that are measured in existing twins data sets.
Moreover, while testing hypotheses about specific mechanisms is conceptually possible using
information on twins, in practice it requires large amounts of data to permit stratification
by each potential mediating factor.3 Given that they are observable, the development of
polygenic scores helps to overcome these difficulties.

We present three main sets of findings. Our first results establish a robust relationship
2For example, using the Swedish Twin Registry, Cesarini et al. (2010) demonstrate that about 25% of

individual variation in portfolio risk is attributable to genetic variation while Cronqvist and Siegel (2015)
show that 35% of variation in propensity to save has a genetic basis. It is worth mentioning, however,
that these estimates may be biased upward if identical twins face more similar family environments than do
non-identical twins (Fagereng et al., 2015).

3Variance decomposition exercises such as twins studies treat genes as unobserved factors. Learning
about interactions between observed and unobserved factors is generally difficult and rests on modeling
assumptions.
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between the polygenic score and wealth. A one-standard-deviation increase in the score is
associated with a 24 percent increase in household wealth (approximately $117,000 in levels).
Education and household income account for a little more than half of this association. The
relationship is only slightly moderated when we control for financial bequests, which could
capture how individuals with higher polygenic scores have parents who are more highly
educated and therefore wealthier. Despite these controls, the polygenic score continues to
exhibit a strong and economically large relationship with household wealth. This leads
us to explore how these genetic factors relate to investment decisions. A classic example
of such a decision is stock market participation (Vissing-Jørgensen, 2002). We demonstrate
that the polygenic score predicts stock market participation even after we have controlled for
education, wealth, and wages, and that stock ownership plays an important role in mediating
the relationship between genetic endowments and wealth. Measures of risk aversion available
in the HRS do not appear to explain this relationship.4 Because stock market participation
affects returns to wealth, these results link the genetic endowments captured by the polygenic
score to the persistent returns described in Benhabib (et al 2011).

Having shown evidence that at least part of the genetic gradient in wealth can be ex-
plained by financial decisions, our second set of results exploits rich data on subjective
macroeconomic expectations to investigate one possible underlying mechanism. We show
that the polygenic score is associated with expectations that are objectively more correct
(Dominitz and Manski, 2007).5 Furthermore, a lower score is associated with beliefs about
the economy that are heaped on probabilities of 0% or 100% (a phenomenon we refer to as
“extreme beliefs”), which suggests difficulty with probabilistic thinking. Importantly, these
extreme beliefs do not appear to solely reflect respondent confusion or measurement error;
households that report extreme beliefs make choices that are consistent with their beliefs.
For example, households that report a 100% probability of a stock market increase over the
following year are 20 percentage points more likely to invest in stocks than those that report
a 0% probability.6 We do not claim that this is the sole mechanism linking genetic ability,

4Previous research suggests that risk aversion has a genetic basis (Cesarini et al., 2009). Unfortunately,
a measure of risk aversion is available only for a subsample of individuals in the HRS. Controlling for
this measure does not substantially attenuate the genetic gradient, but we may be underpowered to detect
meaningful differences.

5Hurd (2009) provides a review of subjective probabilities reported in household surveys such as the
HRS. A number of researchers have used the HRS to study cognition, probabilistic thinking and investment
decisions (Lillard and Willis, 2001; Kézdi and Willis, 2009, 2003). Another set of related studies focuses on
cognitive decline and retirement decisions (Rohwedder and Willis, 2010; Kézdi and Willis, 2013; Delavande
et al., 2006; Delavande, Rohwedder, and Willis, 2008).

6Lillard and Willis (2001) also recognize that focal point beliefs are predictive of investment behavior.
This highlights an important distinction: individuals who report extreme beliefs do not necessarily make
irrational choices at random, but rather make potentially optimal choices based on incorrect beliefs.
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decision-making, and wealth. However, the results on beliefs offer a clear channel driving
some individuals to make consistently better financial decisions and to access higher returns
to wealth.

Our findings suggest that the persistent heterogeneity described in Benhabib, Bisin, and
Zhu (2011) may at least partially operate through genetic endowments linked to human
capital accumulation, financial decision-making, and the formation of expectations. Our
analysis both complements and contrasts with the findings of Cronqvist and Siegel (2015),
who use twins data to study a genetic basis for savings behavior. They conclude that genetic
factors related to savings and wealth may operate through time preference and self control
because of genetic correlations between savings, smoking, and obesity. Though our results
confirm a genetic basis for heterogeneity in wealth, we appear to identify distinct mechanisms.
To highlight this point, we consider additional polygenic scores developed to predict BMI and
smoking (cigarettes per day). We find that all three polygenic scores independently predict
wealth. In particular, we demonstrate that the polygenic scores for BMI and smoking are
negatively associated with wealth, confirming the results in Cronqvist and Siegel (2015).7

Nevertheless, we find that the polygenic score for education continues to predict wealth even
after we condition on these other polygenic scores. Moreover, we do not find any robust
associations between the scores for BMI or smoking and expectations. Cronqvist and Siegel
(2015) find no overall genetic correlation between savings and education. Taken together,
these results suggest that the genetic endowments linked to education, which are the primary
focus of our study, affect wealth through mechanisms that are not directly tied to savings
behavior.

Our third set of findings considers policy implications. If genetic ability affects the qual-
ity of financial decision-making, policies that grant individuals greater discretion in how they
invest and manage financial decisions could exacerbate ability-based inequality. Comparing
wealth outcomes of individuals with and without defined benefit pensions offers some evi-
dence on this. In particular, we show that the gene-wealth gradient is much stronger for
people who do not have such pensions as a source of retirement income. Our interpretation
is that lower genetic scores are more problematic when individuals are tasked with making
their own saving and investment decisions. Such evidence highlights the possible costs of
institutional changes that increase autonomy in financial decision-making, such as the shift
away from defined benefit pensions towards defined contribution plans. Correspondingly,
this suggests that some groups may benefit from institutions that make financial decisions
on their behalf. Promoting better financial decisions represents an alternative to such pater-

7Indeed, we believe this cross-validation demonstrates that twin studies and studies using polygenic scores
yield similar patterns.
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nalism. However, this is only viable if the genetic gradients we describe are easily modified
by household resources and other environmental factors. To explore this possibility, we
assess whether individuals with low genetic scores who are born into more advantageous
environments are less likely to report “extreme beliefs”. Although measures of childhood
socioeconomic status (SES) have been shown to moderate the relationship between these
genetic endowments and college completion in the HRS (Papageorge and Thom, 2016), we
do not find that SES plays such a moderating role for wealth or the accuracy of subjective
expectations.

The remainder of this paper is organized as follows. Section 2 provides some background
on the genetic index used in this paper. Section 3 introduces the data used in this project,
paying particular attention to the construction of wealth measures. Section 4 studies the
relationship between the polygenic score and wealth. Section 5 discusses the polygenic score,
financial decision-making, beliefs about the economy and probabilistic thinking. Section 6
discusses some policy implications of our results. Section 7 concludes.

2 Genetic Data and GWAS

We measure labor market ability using a polygenic score that predicts educational attain-
ment. Since economists are only just beginning to use genetic data, we first provide a brief
introduction to the genetic data we use, as well as its advantages and shortcomings. While
we only present some main ideas here, Appendix A offers much more detail, and a host of
references for the interested reader.

The first point concerns problems linking genetic data to economic behavior. An individ-
ual’s genome consists of 23 pairs of chromosomes, one from each parent. Each chromosome
can be divided into sections that are functionally related, called genes. Each gene is com-
prised of millions of nucleotide pairs — these are the “rungs on the ladder” in illustrations
of our DNA — and such pairs can take only one of two values.8 Further, humans only differ
from one another in a few million of these pairs (less than 1% of the total). The pairs in
which humans may differ are called single nucleotide polymorphisms, or SNPs (pronounced
“snips”).

Once scientists could observe these SNPs (when the human genome was sequenced about
15 years ago) researchers began to link specific SNPs to physical characteristics (e.g., hair

8Each pair can be an adenine-thymine (AT) pair or a guanine-cytosine (GC) pair. While each rung will
be one of these two molecules, the rungs might differ in terms of their relationship to the sides or rails of
the ladder. That is, we might have an AT molecule or a TA molecule, where different ends of the rung are
connected to different sides of the ladder.
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color), but also to behavior (e.g., smoking). However, with millions of SNPs, it is not clear
how to identify which SNPs are relevant for a particular trait. An initial remedy was to
use so-called “candidate genes”, identified by theories about biological processes likely to be
important for the behavior or outcomes of interest. A multiple-hypothesis testing problem
arose, however, given the sheer number of possible candidates, even within a particular gene.
This was such a problem that many encouraging results turned out to be false positives
(Hewitt, 2012; Benjamin et al., 2012).

These challenges led behavioral geneticists to a new approach, known as genome-wide
association studies (or GWAS). In a GWAS, researchers embrace an atheoretical approach
and test each SNP individually for a relationship with the outcome of interest. Stringent
controls are applied to account for multiple hypothesis testing. Essentially, all SNPs are
regressed one by one, along with a set of essential controls. The GWAS revolution has
produced a number of robust, credible results, including the discovery of the most well
known genetic variant associated with obesity and several markers associated with smoking
(Bierut, 2010; Thorgeirsson et al., 2010). Once a GWAS generates a series of coefficients
associated with individual markers, these coefficients can be used to construct genetic indices
called polygenic scores. These scores are typically linear combinations of individual markers.
The Appendix provides considerably more detail on how this is done.

Our measure of genetic ability comes directly from a series of landmark GWAS discov-
eries that have identified some of the first direct associations between specific SNPs and
educational attainment (Rietveld et al., 2013; Okbay et al., 2016). After documenting the
first GWAS for education (Rietveld et al., 2013), the Social Science and Genetics Consor-
tium recently extended their analysis to perform an educational attainment GWAS with
an unprecedented sample size of 293,723 (Okbay et al., 2016). Our genetic measure is the
polygenic score developed in this follow-up study, which combines all genotyped SNPs. We
refer to this measure as the EA Score, indicating that “educational attainment” is the trait
of interest. In recent work, Papageorge and Thom (2016) show that the EA Score predicts
labor market outcomes independently of education, including wages and retirement.

We conclude this section by briefly discussing three important caveats and points of
clarification. First, it is important to note that the genetic variants used in the construction
of this genetic score are not located on sex chromosomes. For this reason, the distribution
of these variants should be identical across men and women. Second, we do not claim to
estimate causal effects of particular genetic variants. Any gene-outcome association that we
observe in general reflects a combination of a direct effect and an indirect effect operating
through the environments that parents make for their children. Parents with advantageous
genetic endowments (which they pass on to their children) are more likely to have the
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resources or capacity to create better environments. Even so, an individual’s genetic make-
up is not changed by human capital investments. In contrast, IQ and other cognitive test
scores are subject to the critique that they reflect environmental factors, such as earlier
human capital investments. For example, Bharadwaj, Løken, and Neilson (2013) find that
variation in health care received by newborns has an impact on academic achievement years
later.9 Genetic indices are not subject to this critique because they are fixed at conception.

A final caveat to our use of genetic data is that it may misrepresent ability. By aggre-
gating a number of genetic variants into a single score, we are implicitly assuming that these
factors work together in determining a single scalar value. However, a growing literature
suggests that ability is multi-dimensional. There may be distinct cognitive abilities (e.g.,
mathematical ability or facility with language), each possessing different associations with
economic outcomes (Willis and Rosen, 1979; Heckman, 1995; Cawley et al., 1997). Ability
may also encompass not just cognition, but non-cognitive factors as well (Heckman and Ru-
binstein, 2001).10 On this point, we are tied to the state of the art in genetics. We do not
yet have the tools to credibly determine whether the individual genetic markers that make
up the score contribute to distinct abilities.

3 The HRS Sample, the Polygenic Score and Wealth

In this section, we introduce the data set we use to examine how genetic ability endowments
relate to wealth. Section 3.1 provides details on how we construct our sample and provides
basic summary statistics. Section 3.2 provides details on our construction of household
wealth.

3.1 Sample Construction

The Health and Retirement Study (HRS) is a longitudinal panel study that follows Americans
over age 50 and their spouses. Surveys began in 1992 and occur every two years. The HRS
collected genetic samples from 15,680 individuals over the course of three waves (2006, 2008,
2010). Genetic data from the 2010 wave have not yet been publicly released, so our sample

9Even birth weight, another proxy of innate endowments that has been used in prior literature, is not
immune to this critique as it reflects in utero investments, e.g., mothers’ smoking behavior (Lien and Evans,
2005), exposure to pollutants (Currie, Neidell, and Schmieder, 2009) stress during pregnancy (Camacho,
2008; Currie and Rossin-Slater, 2013) or mothers’ own health (Costa, 1998). See also Aizer and Currie
(2014) for a recent discussion.

10On multidimensionality, Willis and Rosen (1979) emphasize manual skill, which they distinguish from
academic skill.
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only includes individuals genotyped in 2006 and 2008.11 Individuals in the genotyped sample
tend to be born in younger birth cohorts because survival until at least 2006 is required for
inclusion. Moreover, women and individuals with more education were more likely to agree
to the collection of genetic data.

Our main analysis sample includes all genetically European financial respondents born
before 1965 with non-missing genetic, education, and household wealth data.12 We restrict
the sample to European-Americans because the polygenic score we use was discovered in
a sample consisting solely of genetic Europeans. We further restrict our sample to include
only retired households in years 1996, 1998, and 2002-2010.13 This restriction is aims to
balance concerns about measurement error in wealth with concerns about selection biases
that arise if we drop too many observations from our analysis. Further details on wealth
data, including measurement problems, are found in the following section.14

The resulting analytic sample includes 4,433 financial respondents, with responses sup-
plied for an average of seven waves.15 Table 1 provides basic descriptives on demographic and
educational variables. The mean level of educational attainment is about 13 years, with 21%
of the sample failing to graduate from high school or obtain a GED and about 22% of the
sample earning at least a four year college degree. Roughly 42% of the sample is male. For
financial respondents in our analytic sample, Figure 1 plots the sample (kernel-smoothed)
density of the EA Score variable, the genetic index score we use for our analysis. Values of
the score have been demeaned and re-scaled to measure standard deviations relative to the
mean. Figure 1 suggests that the distribution of the EA Score is approximately normal.

3.2 Household Wealth

The HRS contains rich and detailed information on household wealth. Unfortunately, data
related to household retirement wealth and stock market participation pose various chal-
lenges. Values of defined contribution plans from previous jobs are not asked in every wave;

11Release of genetic data from the 2010 wave is imminent. Thereafter, the genetic score variable must be
re-computed for the larger sample. At that point, it should be straightforward to extend our econometric
analysis to include the larger sample.

12As part of the genetic data release, the HRS also released a file flagging 8,652 individuals as being of
European descent based on their genes.

13By retired, we mean no member of the household is currently employed.
14In further robustness checks available from the authors we demonstrate that our results are robust to

(and in many cases stronger) using alternative data samples. Therefore, we are confident that our main
results relating ability to wealth are not driven by our choice of subsample.

15In subsequent analyses, sample sizes fluctuate depending on “missingness” of data. In particular, we
obtain larger sample sizes for variables for which we have repeated observations not only from the financial
respondent, but also from other members of the household. Moreover, when data are collected for small
numbers of individuals (e.g., special modules), we include as many observations as possible.
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stock allocations in defined contribution plans are only asked in certain waves, and only
for plans associated with the current employer; expected defined benefit pension income is
also asked only of plans at the current employer. In some cases, such issues may be rela-
tively unimportant. However, because this paper studies heterogeneity in wealth for elderly
households, having a complete picture of the households’ retirement assets is of fundamental
importance. While some data issues have no hope of being resolved, our sample comprises
households for whom wealth data is most likely to be both accurate and comprehensive.

Our measure of total wealth in 2010 dollars is designed to encompass all components of
household wealth. Our data includes the present value of all pension, annuity, and social
security income, which come from the RAND HRS income files, as well as the net value
of housing (including primary and secondary residences as well as investment property),
the net value of private businesses, all financial assets including cash, checking accounts,
savings accounts, CDs, stocks and stock mutual funds, bonds and bond mutual funds, trusts,
and other financial assets, less the net value of non-housing debt, each of which we derive
from the RAND HRS wealth files.16 Further, we include the account value of all defined-
contribution retirement plans. We exclude from our wealth measure values of transportation
and insurance.17

We note that our measure of wealth includes both marketable securities, such as stocks
which can be easily sold at publicly available prices, and non-marketable assets such as
social security income. Our measure of wealth is therefore intended to capture the degree
of financial security of the household, rather than the market value of household assets. In
results available from the authors, we show that main results hold if we limit attention to
household financial wealth (total wealth excluding retirement income and housing), which
can be interpreted as the market value of households’ salable financial assets. Further details
on wealth data, reasons for possible mis-measurement and possible alternative subsamples
are found in Appendix B.

Figure 2 shows the unconditional distribution of wealth for observations in our analytic
sample. Notice that the distribution is right-skewed, which is consistent with a relatively
small number of individuals who report very high levels of wealth. Figure 3 shows that the
distribution of log wealth is somewhat more normally distributed.18

Table 2 shows the 10th, 25th, 50th 75th and 90th percentiles of our various wealth mea-
16We follow Yogo (2016) and assume a 1.5% guaranteed rate of return, discounted by the probability of

death in each year conditional on age, cohort and gender as determined by the Social Security life tables.
17In principle, expected defined benefit income is knowable in all years between 1992 and 2012 for working

respondents, but only for the current job.
18Recall from our discussion in Section 2 that the polygenic score does not reflect variants on sex chromo-

somes, so its distribution should be identical in men and women.
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sures, as well as the average. This table contains data on all 15,517 person-year observations
with non-missing wealth data. The average age is 73, ranging from 53-101.19 The first row of
Table 2 shows winzorised total wealth, which includes housing and pensions. The average for
our sample is about $540,000. However, the median individual has total wealth of roughly
$284,000, which is substantially lower. Again, this is due to high levels of wealth among
individuals in the upper tail. For example, wealth at the 10th percentile is about $30,000;
at the 90th percentile, wealth is a little over $1,230,000.

Rows two through four of Table 2 show wealth excluding the values of housing and pension
income. A few interesting patterns emerge. First, housing makes up a larger portion of total
wealth at the lower end of the distribution. For example, at the 10th percentile housing
wealth is more than half of total wealth, whereas it accounts for only about one-fifth of
total wealth at the 90th percentile. A similar result is found for pension wealth. In fact, for
individuals at the 10th percentile, housing and pensions comprise the entirety of household
wealth.

Table 3 shows the median, 75th and 90th percentiles of the individual components of total
wealth. At the median, the table confirms that nearly all wealth is in the form of pensions
and housing. The 75th percentile includes other sources of wealth, including IRA’s, stock
holdings, cash and CDs. At the 90th percentile, wealth is further diversified, including items
such as secondary homes and real estate.

4 Genes, Wealth and Financial Decisions

In this section, we study the relationship between genetic labor market ability (as mea-
sured by the polygenic score), wealth and financial decisions. In Section 4.1 we establish
that the relationship between the EA Score and household wealth is substantial. Control-
ling for factors such as education, bequests and household income reduces the size of the
gradient by about half. In Section 4.2, we assess whether stock market participation can
further explain the relationship between labor market genetic ability and wealth. Control-
ling for stock market participation accounts for an additional third of the size of the genetic
gradient in wealth. In Section 4.3, we examine whether risk preferences explain the rela-
tionship between the EA Score and stock market participation and show that they do not.
Finally, in Section 4.4, we demonstrate that our main results are robust when we incorporate

19This age range raises the possibility that our analysis not only captures the relationship between the
EA Score and wealth accumulation, but also reflects the running down of assets as individuals age post-
retirement. However, 75% of the sample is under aged 80. Basic associations between the EA Score and
wealth remain the same if we restrict attention to this younger subsample.
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spousal ability. Taken together, our results suggest a robust and economically meaningful
relationship between household genetic ability and wealth. However, this link does not solely
operate mechanically through higher earnings, but also appears to reflect how individuals
make financial decisions. In Section 5 we examine preferences and expectations — individual
characteristics that affect financial decision-making.

4.1 The Polygenic Score, Household Wealth and Earnings

Figure 4 presents the stylized fact that motivates this paper. The nonparametric, uncon-
ditional relationship between the polygenic score of the financial respondent and household
wealth, shown by a Lowess plot, is both positive and economically substantial. In Table 4 we
regress wealth on the score and various sets of control variables. Unless otherwise indicated,
all specifications throughout the paper include the following basic controls: the first ten
principle components of the genetic data, a full set of birth year dummies, a full set of age
dummies, a full set of calendar year dummies, a male dummy, and interactions between the
male and age dummies and the male and birth year dummies. Panel A presents results for
the log of wealth, and Panel B presents results for wealth in levels. The results in Column
(1) indicate that a one-standard-deviation increase in genetic ability is associated with 24%
higher total wealth (or about $117,000 in levels).

Since the score measures genetic endowments that predict educational attainment, it is
natural to examine how much of this gradient can be explained by education. Column (2)
adds controls for the financial respondent’s years of schooling and degree, which reduces
the coefficient by more than half; observed educational investments unsurprisingly play a
large role in mediating this relationship. In Column (3), adding controls for parental edu-
cation barely reduces the gradient, as might be expected given the strong inter-generational
persistence in education. Regardless of education controls, the coefficients in the third col-
umn show that a strong and significant association remains. After controlling for own and
parental education, a one-standard-deviation increase in the EA Score is associated with a
10% increase in wealth (or about $54,000).

We next explore mechanisms that might explain the strong positive association between
the polygenic score and wealth, even after controlling for education. Since the score is directly
related to human capital accumulation, perhaps the most obvious channel is performance
in the labor market. Indeed, Papageorge and Thom (2016) demonstrate that the score is
associated with higher wages after controlling for education and family background. Column
(1) of Table 5 presents the association between the score and log wealth, now restricting to
the sample with non-missing data on income and the other mechanism variables considered
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here (coeff. = 0.12).20 In Column (2) of Table 5, we additionally control for the average log
household income (averaged over years with non-missing household labor income). Though
household income predicts higher household wealth as expected, the coefficient on the EA
Score remains nearly the same. This is not terribly surprising, since Papageorge and Thom
(2016) find a modest average relationship between the score and personal income, with
substantial gradients only appearing for the college educated evident among more recent
birth cohorts.21

Since individuals receive their genes from their parents, there will necessarily exist a high
degree of correlation between their genetic score and the scores of their parents. High ability
individuals with more education will tend to have more successful, high ability parents. This
naturally suggests bequests and inheritance as a possible mechanism linking the polygenic
score to household wealth. In Column (3) of Table 5, we add two separate controls for
inheritances. First, we add the log of cumulative value of inheritances received in the current
year (plus one). Second, we add a binary indicator for whether the individual ever receives
inheritances in the HRS data.22 Adding these inheritance variables reduces coefficient on
the EA Score only modestly from 0.121 to 0.106.

Besides influencing the earnings of an individual (and their parents), genetic ability could
affect household wealth by altering the decisions that households make with their saved
earnings and other financial resources. Entrepreneurship or business ownership represents
one investment choice that could drive systematic differences in wealth (Quadrini, 2000). In
Column (4) of Table 5, we add an additional control for whether any member of the household
has ever been observed owning a business in the HRS. This is the case for approximately
35.5% of individuals in the sample. This measure of business ownership is associated with
substantially higher wealth (approx. 30 percent), but its inclusion does little to moderate
the coefficient on the EA Score, which declines from 0.106 to 0.097.

Together, our main findings from this section indicate that about half of the genetic
gradient in wealth can be explained by education and earnings. In other words, the relation-
ship between labor market ability and wealth is to some degree a mechanical consequence
of labor market outcomes: people with higher earnings and access to bequests accumulate

20Note that this coefficient is slightly higher than the coefficient delivered by the specification in Column
(3) of Table 4, which used exactly the same control set. This is due to the restriction in the sample to those
with non-missing values of the income, inheritance, and stock market participation variables examined in
this section.

21After conditioning on our standard control set (excluding own and parents’ education), the incremental
R2 of the EA Score is 2.2% Once we control for own and parents’ education, it falls to 0.4% For comparison,
the EA Score predicts 6.6% of the variation in education outcomes once we condition on our standard control
set excluding parents’ education.

2243.5% of individuals in the sample report an inheritance.
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larger amounts of wealth. Nevertheless, much remains to be explained. We now ask if we
can further explain the genetic gradient in wealth by considering financial decisions — in
particular, stock market participation.

4.2 Examining the Role of Stock Market Participation

One of the most prominent financial decisions facing a household is how to allocate their
wealth across different asset classes. Indeed, an enormous literature explores the portfolio
choice problem and stock market participation in particular (Van Rooij, Lusardi, and Alessie,
2011). Returning to Table 5, in Column (5) we add an indicator variable for any stock market
participation as a regressor in our specification. Accounting for stock market participation
reduces the coefficient on the EA Score by more than one-third, from 0.099 to 0.062. This
suggests that portfolio choice decisions, and stock market participation in particular, may
represent a critical channel linking genetic ability to household wealth.

To learn more about the relationship between genetic ability and stock market partic-
ipation, Table 6 estimates specifications in which the dependent variable is a dummy for
whether or not the financial respondent’s household owns any stocks. Column (1) indicates
that a one-standard-deviation increase in the EA Score is associated with a 3.7 percentage
point increase in the probability of stock market participation. Two explanations could ra-
tionalize this pattern. First, this could simply reflect the fact that individuals with higher
polygenic scores are wealthier, and wealthier people tend to invest more of their wealth in
risky assets such as stocks. Alternately, this genetic gradient could reflect differences in the
portfolio choices that people make for a given level of wealth. In Column (2) 6, we add the
lagged (last wave) values of the log of household wealth as a control variable. This is indeed
strongly associated with stock market participation, and its inclusion reduces the coefficient
on the EA Score to 0.028, cutting the association by about one fourth. When the average
log household income is included in Column (3), the coefficient remains the same. Our con-
clusion is that the genetic score appears to be associated with stock market participation,
even controlling for current wealth and the average of past wages.

4.3 Risk Preferences

Given the importance of stock market participation in accounting for the genetic gradient, a
natural hypothesis is that the endowments captured by the EA Score may operate through
risk preferences. To examine this mechanism, we use survey items in the HRS that pose
hypothetical questions about a choice between guaranteed total family income or a gamble
that might result in a permanent increase or decrease in total family income. Specifically,
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respondents are asked to choose between two jobs: “The first would guarantee your current
total family income for life. The second is possibly better paying, but the income is also
less certain. There is a 50-50 chance the second job would double your total lifetime income
and a 50-50 chance that it would cut it by X.” The series replaces X with a set of possible
income losses: “10 percent, twenty percent, a third, half, seventy-five percent.” We create a
dummy variable for risk aversion which takes a value of one if an individual always responds
with a preference for the job that guarantees current income over the job that might either
double income or result in a 10 percent loss. This response indicates the highest degree of
risk aversion permitted with this set of questions, and approximately 32 percent of financial
respondents in our basic sample always respond this way.23

We explore the relationship between risk aversion, the EA Score and wealth in Table
7. In Column (1), the dependent variable is our binary indicator for risk aversion. We
find a weak negative association between the EA Score and risk aversion — a one-standard-
deviation increase in the score is associated with a reduction in the probability of a risk averse
response by 1.8 percentage points. However, this association is only marginally significant
(p < 0.10). In Columns (2)-(3), we revisit our basic specification with the log of total wealth
as the dependent variable. Since we only observe the risk aversion measure for a subset of
our baseline sample, we first re-estimate our basic specification (Column (3) from Table 4) on
the sample with non-missing risk aversion measures. We find a coefficient on the EA Score
of 0.124. In Column (3), we add our risk aversion dummy. Our measure of risk aversion
is informative; risk averse individuals are estimated to have approximately 17 percent less
wealth, and this association is highly significant. However, including this measure of risk
aversion only slightly reduces the coefficient on the EA Score, from 0.124 to 0.121. This
suggests that risk preferences, at least as captured by this measure, do not play a major role
in explaining the genetic gradient in wealth.

Columns (4)-(5) of Table 7 consider stock ownership. As with total wealth, we first
re-estimate our basic specification using the risk aversion sample. In Column (4) we find
that a one-standard-deviation increase in the EA score is associated with a 3.5 percentage
point reduction in the likelihood of stock ownership. When we add our risk aversion measure
in Column (5), this association falls only slightly, to 3.4 percentage points. However, our
risk aversion measure is indeed strongly associated with stock ownership; the probability
of stock ownership is 7.3 percentage points less likely among risk averse individuals, and
this association is highly significant. Taken together, the results in Table 7 indicate a weak

23One could imagine creating several measures of risk aversion based on this series of questions. For
example, one could code individuals as being risk averse based on a different threshold (e.g. taking the
guaranteed salary when compared to gamble with a possible loss of one third or more). In results available
from the authors, we show that findings in Table 7 are robust to alternate cutoffs.
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negative association between the EA Score and risk aversion that explains, at best, only a
tiny portion of the relationship between the EA Score and wealth.

4.4 Non-Financial Respondent Ability and Household Wealth

Before turning to a more detailed discussion of the EA Score and financial decision-making,
we briefly assess the robustness of our results if we incorporate the ability of other members of
the household. Our analysis until now has only used the ability of the “financial respondent”
(FR). Doing so ignores the possibility that household wealth may also be a function of the
ability of the financial respondent’s spouse, deemed the “non-financial respondent” (NFR).
We demonstrate that NRF ability is predictive of wealth even after controlling for FR ability.
However, we also demonstrate that our results are qualitatively similar if we instead consider
maximum household ability.

In Panel A of Table 8, we show that the scores of both the NFR and FR independently
predict wealth if we include both in a regression with log wealth as the outcome variable.
In Column (1), we restrict the sample to the set of households where both FR and NFR
EA Scores are available and we regress log wealth (plus one) on the EA Score of the FR
along with the standard set of controls and obtain a coefficient of 0.097. In Column (2),
if we include EA Score of the NFR, we find that the coefficient on the FR EA Score falls
modestly to 0.092 and that the coefficient on NFR EA Score is 0.078. In Columns (3) and
(4), we repeat the exercise with stock market participation as the outcome variable. If we
do not include NFR ability, the coefficient on FR ability is 0.022. This falls to 0.019 once
we control for NFR EA Score. Surprisingly, the coefficient on NFR labor market ability is
larger, estimated at 0.034.

Together, the results in Panel A of Table 8 provide support for the idea that basic patterns
we have shown until now remain intact if we include NFR EA Score as an additional variable.
However, these results also seem to suggest that the FR EA Score may not sufficiently capture
the ability endowments that are relevant for household wealth outcomes. That is, there may
be alternative ways to incorporate the labor market ability of both spouses. This naturally
raises the question of how the ability endowments of each spouse combine to produce joint
household outcomes. The endowments of the FR and the NFR might substitute for one
another if an individual’s high ability can compensate for the low ability of their spouse.
Alternately, spousal abilities might be complementary if high and low ability spouses have
to reach compromise positions on financial decisions.

We defer a full analysis of this topic for future work. However, Panel B of Table 8
provides some suggestive evidence that a high ability spouse can compensate for the low
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ability of a financial respondent. Here we consider as a regressor not the FR EA Score, but
the maximum of the FR and NFR scores. In Column (1), we replicate our baseline wealth
regression, restricting to households with two genotyped spouses (EA Score coeff = 0.097).
In Column (2) we instead measure household ability with the maximum score variable, and
the estimated genetic gradient increases by over one third (coeff = 0.147). Similar results
hold in Columns (3)-(4), where we repeat this exercise for stock market participation.

5 Genes, Financial Literacy and Expectations

The preceding results suggest that i) there is a substantial relationship between the EA Score
and household wealth, ii) this is not entirely or even primarily related to higher income, and
iii) this appears to be at least partially mediated by stock market participation, which is a
financial choice variable. This leads us to investigate whether individuals with different levels
of the polygenic score differ in terms of how they think about financial decisions. In Section
5.1, we document a relationship between genetic ability and financial literacy. In Section
5.2, we examine genetic ability and subjective beliefs about macroeconomic outcomes. In-
dividuals with higher values of the EA Score report subjective expectations that are closer
to objective probabilities, and are less likely to report “extreme” beliefs that take some out-
comes as certainties. In Section 5.3, we show that these self-reported beliefs, though not
incentivized, are indeed linked to wealth and financial outcomes. For example, individuals
with lower genetic scores are more likely to predict excessively high probabilities of low stock
market returns and are subsequently more likely to be observed avoiding the stock market.
Finally, in Section 5.4 we explore whether the EA Score studied here is related to BMI or
smoking, which earlier research has linked to savings (Cronqvist and Siegel, 2015).

5.1 The Polygenic Score and Financial Literacy

An obvious theoretical starting point is financial literacy (Delavande, Rohwedder, and Willis,
2008). Do individuals with higher EA Scores exhibit greater sophistication in their under-
standing of financial choices? Fortunately, the HRS data contain a number of questions that
directly assess an individual’s financial literacy. Unfortunately, these are asked in a small
module in the 2010 wave, which leaves us with less than 700 genotyped respondents for these
questions. The 2010 module asks three basic financial literacy questions:

◦ Compounding Interest: “First, suppose you had $100 in a savings account and the
interest rate was 2% per year. After 5 years, how much do you think you would have
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in the account if you left the money to grow – more than $102, exactly $102, or less
than $102?”

◦ Real Interest Rate: “Imagine that the interest rate on your savings account was
1% per year and inflation was 2% per year. After 1 year, would you be able to buy
more than today, exactly the same as today, or less than today with the money in this
account?”

◦ Diversify Stocks: “Do you think that the following statement is true or false: buying
a single company stock usually provides a safer return than a stock mutual fund?”

Columns (1)-(3) of Table 9 present linear probability models explaining whether respondents
correctly answered these questions as function of the EA Score and our standard set of
controls.24 The score is positively related to correctly answering the Real Interest Rate
and Diversification questions, but only the coefficient for the Real Interest Rate questions
is statistically significant (p-value < 0.05). In Column (4), the dependent variable is an
indicator for whether the individual correctly answered all three questions. We find that
a one-standard-deviation increase in the EA Score is associated with a 4 percentage point
increase in the probability of correctly answering all questions (p-value <0.1). The financial
literacy module also asks a separate question on whether creditors or debtors would be helped
by inflation. This question is not asked to the individuals who answered the three questions
listed above. Column (5) present estimates related to a correct answer on this question. The
genetic association for this question is statistically significant and economically substantial: a
one-standard-deviation increase in the score is associated with an 8 percentage point increase
in the probability of a correct answer (p-value < 0.01).

Taken together, the results in Table 9 provide some evidence that individuals with higher
values of the genetic score tend to be more financially literate. However, we again reiterate
that these results should be interpreted cautiously since the financial literacy questions are
available only for a small subset of the individuals in our main analysis sample. Thus, we
may be underpowered to detect true effects with such relatively small samples.

5.2 The Polygenic Score and Economic Expectations

An important element of financial decision-making is an assessment of the risks and un-
certainties associated with the macroeconomy and the payoffs to different possible financial
choices. Despite the typical assumption of rational expectations, it has long been recognized
that individuals may have trouble forming accurate beliefs about probabilistic outcomes

24Those responding that they “Don’t Know” were coded as not responding correctly.
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(Savage, 1954; Kahneman and Tversky, 1972). Recent literature examines the role of sub-
jective expectations in economic decisions such as human capital investments (Wiswall and
Zafar, 2015) and stock market participation (Arrondel, Calvo Pardo, and Tas, 2014). Re-
lated, a number of papers have used HRS data to study the relationship between beliefs and
investment behavior (Hudomiet, Kézdi, and Willis, 2011).

Here we investigate whether the EA Score is associated with differences in the beliefs and
expectations about objective macro events that are relevant for financial choices. The HRS
data are uniquely well-suited for this analysis, since most respondents are repeatedly asked
to provide subjective probabilities on a range of events. Individuals are asked to provide a
probability on a scale of 0 to 100, for the following three events:

◦ Stock Market Goes Up: “By next year at this time, what is the percent chance that
mutual fund shares invested in blue chip stocks like those in the Dow Jones Industrial
Average will be worth more than they are today?”

◦ Economic Depression: “What do you think are the chances that the U.S.economy
will experience a major depression sometime during the next 10 years or so?”

◦ Double Digit Inflation: “And how about the chances that the U.S. economy will
experience double- digit inflation sometime during the next 10 years or so?”

The panels of Figure 5 present histograms of the responses, pooling all person-year ob-
servations across waves. Across all three questions, we see evidence of heaping at focal
probabilities. Specifically, there are pronounced spikes at answers of 0, 50, and 100. It is
essential to note that respondents are given specific instructions about the meaning of a re-
sponse of 0 or 100. That is, they are told to supply these answers if they believe that there is
“absolutely no chance” that the event will happen, or if it is “absolutely certain” to happen.
All three of these macroeconomic events can be associated with objective probabilities that
should be common knowledge in an economy with fully informed agents. Indeed, Hudomiet,
Kézdi, and Willis (2011) also discuss such “focal point” beliefs, compare them to objective
probabilities and recognize that they can drive behavior.

Our objective benchmark probability for the stock market going up in a single year is
71 percent, which is the average number of years of positive returns for the S&P 500 over
the period 1992-2015. There is no common definition of an economic depression, but clearly
this refers to an unusually severe period of economic contraction. We use data from the
Federal Reserve Bank of Saint Louis on annual real GDP growth over the period 1948-2016,
and define an unusually severe contraction as a year with growth less than or equal to
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-0.73 percent, which is the 25th percentile of the distribution of growth rates for negative-
growth years. Based on this metric, the unconditional probability of a severe contraction
is 4.4 percent per year, which implies a 36 percent probability for such an event over a 10
year period. Finally, we note that the Bureau of Labor Statistics reports two years with
double digit inflation (1980, 1981) over the period 1958-2015. This implies an approximate
probability of 3.4 percent for double digit inflation in any year, or about a 29 percent chance
for double digit inflation over a 10 year period.

Table 10 provides estimates of the association between the EA Score and individual
beliefs about the probabilities of these macroeconomic events. Each panel presents results on
a different expectation (Panel A: probability the stock market goes up, Panel B: probability
of a depression, Panel C: probability of double digit inflation). Our first measure related to
these expectations variables is the absolute value of the deviation between the respondent’s
probability and the objective probability. We regress this deviation on our standard controls
and the EA Score in Column (1). For all three events, higher values of the polygenic score are
associated with a statistically significant reduction in the deviation between the respondent’s
subjective probability and the objective probability. For example, in Column (1) of Panel
A, the coefficient estimate of -0.453 suggests that a one-standard-deviation increase in the
score is associated with a reduction in the deviation of about one half of a percentage point.

Columns (2)-(4) of Table examine binary outcomes indicating whether respondents an-
swered with specific focal probabilities (0, 50, and 100, respectively). For all three events,
we observe the same pattern of association: The EA Score is negatively associated with
providing a subjective probability indicating complete certainty (0 or 100), and is largely
uncorrelated with providing a focal probability of 50 percent. It should be noted that the
magnitudes of these associations are substantial. For example, Column (2) of Panel B
suggests that a one-standard-deviation increase in the EA Score is associated with a 0.5
percentage point reduction in the probability of believing there is 0 chance that the economy
will suffer a major depression in the next 10 years. For the sake of comparison, 6.7 percent
of individuals responded with a 0 belief for this item.

5.3 The Polygenic Score and Planning Horizon

Another mechanism through which ability may impact wealth is the planning horizon. A
well-documented challenge for prudent savings and investment decisions is the complexity
associated with intertemporal choices. Thinking about the distant future is difficult; as the
planning horizon increases so to does the uncertainty around financial needs, investment and
employment opportunities, family composition, and a host of other important considerations.
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Table blah blah blah shows the EA Score strongly predicts the length of the planning
horizon.

One interpretation is smart people easier to think good. Another may be that, rather than
a heightened ability to think abstractly about complex problems, the relationship between
the EA score and the planning horizon operates through time discounting. This is unlikely
however. Even the most extreme lower-bound of credible estimates of time-discount factors
would imply implausibly large values of external frictions, such as fixed costs of planning, to
reduce a household’s planning horizon to a few short years.

Nonetheless, we attempt to directly assess the possibility that planning horizon is as-
sociated with the EA Score through time discounting. Table blah shows stuff. We see no
evidence. We note, however, that the test is likely underpowered, and we leave a more
thorough investigation of this potential mechanism for future research.

5.4 Economic Beliefs, Wealth, and Financial Decisions

The results of the preceding section suggest that individuals with lower genetic scores appear
to report beliefs that are at odds with objective probabilities and, moreover, tend to heap
on “focal” beliefs. One possibility is that these reported beliefs are not related to individual
behavior in a meaningful way. For example, it may be that individuals with lower polygenic
scores simply report numbers that are not reflective of their beliefs. This would suggest that
their answers are more prone to measurement error, but do not necessarily imply greater
difficulties with financial decisions.

In Table 11 we investigate how beliefs relate to behavior and wealth. In Column (1),
we show that individuals who have ever reported a 0% probability of a stock market in-
crease are 22% (percentage points) less wealthy on average. Similar magnitudes are evident
for individuals who have ever reported expecting a recession or double-digit inflation with
100% certainty. Individuals who have ever reported a 100% certain belief that stocks will
appreciate over the next year are wealthier by 26% on average. This offers weak evidence of
an important asymmetry in the effect of incorrect beliefs on wealth accumulation. Because
stocks historically offer high returns relative to their risk, incorrect but optimistic beliefs
are likely to motivate larger stock market investments, which over time are likely to pro-
duce faster wealth accumulation. Households that report incorrect but pessimistic beliefs
are likely to miss out on these gains. In Column (2) of Table 11 we find the deviations from
objective probabilities of macroeconomic events are also negatively correlated with wealth.

For heterogeneity in beliefs about the macroeconomy to generate disparity in wealth, it
must be that such beliefs meaningfully inform economic decisions. The most direct mecha-
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nism through which beliefs about the stock market would influence wealth accumulation is
through stock ownership. Columns (3) and (4) test whether beliefs about the stock market
map into actual economic decisions. Individuals who are certain stock prices won’t rise are
20 percentage points less likely to participate in the stock market than individuals who are
certain that prices will increase. This table suggests that expectations about the economy
— in particular focal beliefs and beliefs that deviate from objective probabilities — predict
household financial decisions (Hudomiet, Kézdi, and Willis, 2011).

5.5 Alternate Mechanisms

We have stressed expectations and information processing as two likely mechanisms linking
genetic endowments for education with wealth accumulation. However, it is plausible that
the EA Score also measures genetic factors that operate through other channels. In par-
ticular, Cronqvist and Siegel (2015) argue that the genetic endowments that drive savings
and wealth may work through time preference and self-control. Using twin study methods,
they demonstrate a genetic correlation between savings, obesity, and smoking. Given the
role of time preference and self-control in governing health behaviors such as food intake or
cigarette consumption, Cronqvist and Siegel (2015) suggest that these mechanisms are likely
to also play an important role in the genetic basis for wealth. This raises the possibility that
the EA Score also captures genes related to self-control and time preference, and that these
traits provide a common genetic basis for education, smoking, BMI, and wealth. Alternately,
the genes summarized in the EA Score may capture additional, distinct behavioral channels.

To assess these possibilities, we next turn our attention to additional polygenic scores
that have been developed for BMI and smoking. These scores are constructed using the
same methods used to develop the EA Score from Okbay et al. (2016). For obesity we use
a polygenic score developed to predict BMI based on the estimates of Locke et al. (2015).
For smoking, we use a score developed to predict the number of cigarettes smoked per day
(CPD) at peak consumption, based on the estimates of Thorgeirsson et al. (2010). All scores
have been standardized to have a mean of zero and a standard deviation of 1.

To begin, Panel A of Table 12 presents the simple correlations between the polygenic
scores for education, BMI, and cigarettes per day. We find negative correlations between
the EA Score and the other two polygenic scores. However, these correlations are relatively
modest (-0.18 for BMI and -0.09 for cigarettes). We next explore the associations between
the additional polygenic scores and wealth. In Panel B we add the BMI and smoking scores
to some of our basic regressions for wealth and expectations accuracy. Column (1) adds these
scores to our baseline specification explaining the log of total wealth (Column 3 of Table
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4). The polygenic scores for BMI and CPD are both negatively correlated with wealth,
consistent with the results from Cronqvist and Siegel (2015). A one-standard-deviation
increase in the score for BMI is associated with approximately 6 percent lower wealth. This
association is 5.3 percent for the CPD score. We believe that these results provide an
important cross-validation of results in (Cronqvist and Siegel, 2015), which were generated
using twin studies.

Next, we ask whether the BMI and CPD scores explain the relationship between the EA
Score and wealth. Adding the BMI and CPD scores does moderates the relationship between
the EA Score and wealth, but not substantially. The coefficient on the EA Score is still large
and statistically significant (0.086 compared to 0.099 for the baseline). It is noteworthy
that all three scores independently predict wealth. This could arise either because all three
scores measure the same latent genetic endowments with error, or because they indeed
reflect distinct genetic factors. To explore this further, we examine whether these other
polygenic scores also predict extreme expectations. Columns (2)-(5) in Table 12 revisit
our specifications on deviations from objective beliefs about the stock market, the risk of a
depression, and the probability of double digit inflation (Column 1 from Table 10). While we
continue to find a negative association between the EA Score and deviations from objective
beliefs, we find no statistically significant relationships between the BMI and CPD scores
and these deviations.

Taken together, the results from Table 12 suggest a nuanced story. Genes related to
education, smoking, and obesity all appear to influence wealth. However, while the genetic
endowments tied to education are associated with expectations and information processing,
the endowments related to BMI and smoking seem to operate through distinct mechanisms.25

The results presented here highlight the usefulness of polygenic scores and molecular
genetic data for the study of population heterogeneity. The direct observation of polygenic
scores allows one to extend genetic analysis to data sets like the HRS, which do not contain
twins data, but do contain genetic data and rich information on variables such as beliefs
that may not be accessible in twins studies. The results presented here have several impli-
cations for our understanding of heterogeneity in the wealth accumulation process. First,

25In separate analyses available upon request, we replicate every regression in Table 10, adding in all three
polygenic scores. We continue to find statistically significant, negative associations between the EA Score and
the likelihood that an individual provides an extreme probability in either direction for all three expectation
outcomes. For the BMI and CPD scores, we find only marginally significant (p < 0.10) associations for two
out of twelve associations, but otherwise find no statistically significant relationships between the scores and
extreme beliefs. We do, however find that the BMI and CPD scores appear to be negatively associated with
the probability of providing a subjective probability of exactly 0.50 for the stock market question (significant
at the 0.05 and 0.10 levels, respectively). However, we note that we do not find the same pattern for the
depression or inflation questions. We never find a statistically significant relationship between the EA Score
and providing a subjective belief of 0.50 for any question.
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while twins studies have established the importance of genes for wealth, there appear to
be multiple distinct genetic mechanisms. One source of genetic heterogeneity may work
through time preference and self control, affecting savings along with health behaviors. We
also find evidence for a separate source of heterogeneity — linked to human capital accu-
mulation — which may work through information processing and expectations formation.26

Because time preference and other savings-based mechanisms cannot explain persistent dif-
ferences in returns to wealth, evidence for a genetic mechanism related to information and
decision-making offers an important biological micro-foundation for the kind of heterogeneity
described by Benhabib, Bisin, and Zhu (2011). Moreover, because this mechanism affects
decision-making and not preferences, this raises the possibility that policies targeting infor-
mation or assistance in financial choices could impact genetic inequality.

6 Evidence on Policy Implications

In this section, we turn to some policy implications of our results. The results of the preceding
sections suggest that individuals with different levels of labor market ability differ in terms
of financial literacy and the accuracy of their beliefs. Since these are important inputs
for effective financial decision-making, individuals with lower levels of labor market ability
might benefit if at least some of their financial decisions are managed by a third party.
Defined benefit pensions (employer based pensions) offer one arrangement in which savings
are effectively managed by an individual’s employer (or a third party), and an individual
receives a guaranteed stream of income without having to make investment decisions over the
life-cycle. Of course, pension participation is not necessarily randomly assigned. In Table
13, we regress an indicator for defined benefit pension holdings onto the EA Score. We show
that after including our standard battery of controls, there is no economically meaningful or
statistically significant relationship between the EA Score and pension holdings. In Column
(2), we assess the association between pensions and wealth and show that holding a pension
is associated with a 37 percent increase in wealth. In Column (3) of Table 13, we ask if
receiving a pension moderates the relationship between genes and wealth. In particular,
aside from our general set of controls, the EA Score and a dummy for holding a pension, we
also include an interaction between the EA Score and the pension dummy. The coefficient on
the interaction is negative and significant, suggesting that pensions moderate the relationship

26The HRS does feature an off-wave questionnaire on consumption that could be used to estimate savings
behavior. Unfortunately, the sample sizes for this questionnaire are very small, preventing us from conducting
a well-powered analysis of savings behavior. In results available upon request, find no significant relationship
between the EA Score and the log of household consumption, controlling for the log of last year’s labor income
and our standard controls.
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between genetic ability and wealth.
Defined benefit pensions may reduce the genetic gradient by limiting autonomy in fi-

nancial decision-making and protecting individuals from mistakes or incorrect beliefs. To
test this particular account, we estimate an additional specification in Column (4) of Table
13 that uses information on (maximum) deviations from objective beliefs about the stock
market, the risk of a depression, and the probability of double digit inflation (Column 1
from Table 10). We include these deviations as covariates and also interact them with the
indicator for receiving a defined benefit pension. We continue to find significant negative
relationships between each of these deviation variables and household wealth. However,
we also find significant positive interactions between the defined benefit indicator and each
of these deviations. This suggests that the consequences of inaccurate beliefs may be less
pronounced for people faced with fewer investment decisions. When these interactions are
included the interaction between the EA Score and the defined pension dummy shrinks in
size (from -0.079 to -0.059) and becomes insignificant. While we cannot precisely estimate
a difference in this coefficient across specifications, the results in Columns (3)-(4) are con-
sistent with idea that the genetic endowments we study operate at least partly through
expectations, and that disparities arising from these endowments can be mitigated in policy
environments that demand fewer household decisions.

We also ask if high childhood SES mitigates the likelihood that individuals report extreme
beliefs. Some individuals with disadvantageous ability endowments, but who are born into
high-SES environments, may have access to resources and investments that would improve
their ability to form expectations or to process information. We consider four retrospective
childhood SES measures: whether or not the individual grew up in poverty; average income
of father’s occupation; whether the family ever moved or asked for help due to financial
difficulties and whether the individual’s father was ever unemployed for long periods of
time.27 In Table 14, we relate extreme beliefs to “high SES” for each measure. In Panel A,
we consider the belief that the stock market will go up with 100% probability. High SES
(not growing up in poverty) is associated with a lower probability of reporting an extreme
belief. If the family moved or asked for help due to financial troubles, the individual is more
likely to report an extreme belief. We ask whether there is an interaction between SES and
a higher genetic score and find little evidence of such an effect. In other words, there is
little evidence that high SES attenuates the relationship between a low polygenic score and
extreme beliefs. We find similar results for extreme beliefs except for beliefs about double

27These four childhood SES measures are discussed at length and used in conjunction with the polygenic
score in Papageorge and Thom (2016).

24



digit inflation and the income measures of childhood SES.28

The results on education provide some evidence that education many not be a solution
to the problem that some ability endowments are associated with difficulties in probabilistic
thinking. Of course, much research would need to be done to assess whether this is truly the
case. Still, our results provide additional support for the idea that public pension schemes
could mitigate inequality due to poor financial decision-making. These types of schemes have
come under fire precisely because of the sound argument that individuals, acting on their
own, could make better portfolio decisions than a public pension scheme, for example. The
opposing argument is that poverty among the elderly, beyond being undesirable on ethical
grounds, also imposes costs on society. If so, then allowing people to make autonomous
financial decisions that lead to poverty creates an externality and it may be welfare enhancing
to reduce autonomy.

7 Conclusion

This paper shows that the same genetic endowments that predict educational attainment and
earnings are also associated with higher wealth. This could arise purely from an association
between ability and earnings, as high earnings will mechanically generate high wealth. We
show that controlling for education and earnings does indeed attenuate the genetic gradient in
wealth, but only accounts for roughly one half of the association. Stock market participation
accounts for one third of the remaining gradient in wealth, which suggests financial decision-
making as another mechanism linking labor market ability and wealth. We show that those
with a higher polygenic score perform better on standard financial literacy questions, and
are less likely to report extreme beliefs about the economy, including the likelihood of stock
market appreciation or a severe recession.

We also show evidence that childhood SES does not appear to modify the relationship
between the polygenic score and beliefs. This is troubling as it suggests that reallocat-
ing resources for educational investments is not an easy solution for difficulties in financial
decision-making. On the other hand, we show that the genetic gradient in wealth is weaker
among individuals who have less autonomy in their financial decisions due to participa-
tion in traditional pension plans, while participation in pensions is not itself predicted by
the polygenic score. Our findings suggest that policies that reduce autonomy in financial
decision-making, such as public pension schemes, might play an important role in reducing
wealth inequality. This is particularly important given our findings that the same ability en-

28Results remain the same under various sets of controls, i.e., whether or not we control for parents’ or
own education.
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dowments that predict low earnings also predict disadvantageous financial decision-making,
which could further exacerbate wealth inequality among the elderly.
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8 Tables and Figures

Table 1: Summary Statistics

Variable Mean Std. Dev. N
Male 0.42 0.49 4433
< 1930 0.32 0.47 4433
1930-1934 0.19 0.39 4433
1935-1939 0.21 0.41 4433
1940-1944 0.15 0.36 4433
1945-1949 0.07 0.26 4433
1950-1954 0.05 0.22 4433
Education (Years) 12.88 2.57 4433
None 0.16 0.37 4429
GED 0.05 0.21 4429
High School 0.53 0.5 4429
College (2 year) 0.04 0.21 4429
College (4 year) 0.13 0.33 4429
Masters 0.07 0.25 4429
Advanced 0.02 0.14 4429
Yrs. of ed: Father 9.76 3.61 3193
Yrs. of ed: Mother 10.26 3.11 3329

Notes: Summary statistics for our main cross-
sectional sample of financial respondents.

Table 2: Wealth Distribution

p10 p25 p50 p75 p90 Mean St Dev

Wealth (Winz) 29,550 105,089 284,176 631,047 1,235,471 540,640 826,944
Wealth (No Housing) 12,861 45,000 146,686 413,621 919,036 411,180 1,355,300
Wealth (No Pensions) 1,212 66,144 224,520 549,822 1,124,892 495,831 1,083,248
Wealth (No H or P) 0 5,469 85,422 327,315 810,000 330,375 950,170

Notes: Wealth mean and distribution (10th, 25th, 50th, 75th and 90th percentiles) for total wealth, non-
housing wealth, non-pension wealth and wealth that includes neither pensions nor housing. These statistics
are calculated for the full sample of 15,517 household-year observations with non-missing wealth data.
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Table 3: Components of Wealth

p50 p75 p90 Mean Med Share Mean Share

Ret Plans (Employer) 0 0 0 22,343 0 % 4 %
Ret Inc (PV) 33,641 74,736 136,550 58,461 21 % 9 %
Real Estate 0 0 57,717 46,671 0 % 7 %
Business 0 0 0 36,742 0 % 6 %
IRAs 0 55,055 202,557 72,207 0 % 12 %
Stocks 0 28,000 214,708 89,883 0 % 14 %
Cash Equiv 8,102 30,000 81,023 33,169 5 % 5 %
CDs 0 5,408 60,000 22,980 0 % 4 %
Bonds 0 0 0 14,667 0 % 2 %
Other Assets 0 0 16,224 14,382 0 % 2 %
Other Debts 0 0 5,000 2,706 0 % 0 %
Trusts 0 0 0 2,380 0 % 0 %
Home Value 118,131 208,100 354,475 164,562 74 % 26 %
Mortgage 0 0 58,742 16,499 0 % 3 %
Home Loan 0 0 0 2,315 0 % 0 %
Second Home 0 0 27,704 21,964 0 % 4 %
Second Morgt. 0 0 0 1,450 0 % 0 %

Notes: Summary statistics of different sources of wealth (mean and distribution, including the 50th, 75th
and 90th percentiles). Columns 5 and 6 are median and mean share, respectively, of each component in
total wealth.
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Table 4: The Polygenic Score and Wealth

Panel A: log Wealth
(1) (2) (3)

EA2Score 0.235*** 0.103*** 0.099***
(0.022) (0.022) (0.022)

Resp Education No Yes Yes
Parental Education No No Yes

Obs. 15202 15202 15202
R2 0.151 0.255 0.259

Panel B: Wealth (level)
(1) (2) (3)

EA2Score 117,301*** 57,475*** 54,520***
(12,938) (12,260) (12,290)

Resp Education No Yes Yes
Parental Education No No Yes

Obs. 15517 15517 15517
R2 0.089 0.169 0.172

Notes: Significance stars ***, **, and * indicate statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. All regressions include the following standard set of controls: first ten principal components of
the genetic data, a full set of birth year dummies, age dummies, calendar year dummies, a male dummy,
interactions between the birth year and male dummies, interactions between the age and male dummies, a
dummy variable for individuals in 2002 with dormant retirement accounts, and an interaction between the
EA Score and the indicator for dormant accounts. Column (2) adds controls for the financial respondent’s
own education: years of education, and a full set of dummies for degrees. Column (3) adds controls for
parental education: years of education for the respondent’s father and mother, respectively, along with
dummy variables indicating missing values for either. Standard errors are clustered at the household level.
We use data on all household-year observations where no individual in the household is working for pay and
not retired
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Table 5: Total Wealth, Income Flows, and Financial Decisions

Dep. Var:
log Tot. Wealth (1) (2) (3) (4) (5)

EA Score 0.120*** 0.121*** 0.106*** 0.097*** 0.061***
(0.027) (0.026) (0.026) (0.026) (0.023)

Avg log HH Inc 0.347*** 0.333*** 0.349*** 0.273***
(0.038) (0.038) (0.039) (0.033)

log Sum Inher. 0.022*** 0.022** 0.014*
(0.008) (0.008) (0.007)

Ever Rec Inher. 0.156 0.151 0.108
(0.095) (0.095) (0.081)

Ever Own Bus. 0.303*** 0.257***
(0.054) (0.046)

Owns Stocks 1.032***
(0.041)

Obs. 6943 6943 6943 6943 6943
R2 0.291 0.330 0.345 0.354 0.455

Notes: Significance stars ***, **, and * indicate statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. The dependent variable in all specifications is the log of total wealth, as used in Table 4.
All regressions include the standard set of controls outlined in the Notes to 4, as well as controls for the
respondent’s education (years of schooling and a fully set of degree dummies), and controls for mother’s
and father’s education. Standard errors are clustered at the household level. To allow for comparability of
coefficients across specifications, we restrict the sample in all specifications here to households with non-
missing observations on average household income, inheritances, business ownership, and stock ownership.
We use data on all household-year observations where no individual in the household is un-retired and
working for pay.
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Table 6: Polygenic Score and Stock Ownership

Dep. Var:
Owns Stocks (1) (2) (3)
EA2Score 0.037*** 0.027*** 0.028***

(0.009) (0.010) (0.010)
Lag of log Wealth 0.156*** 0.152***

(0.008) (0.009)
Avg log HH Inc 0.025**

(0.012)
Obs. 7893 4938 4938
R2 0.221 0.374 0.376

Notes: Significance stars ***, **, and * indicate statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. The dependent variable in all specifications is a dummy variable indicating whether the house-
hold owns any stocks or stock mutual funds. All regressions include the standard set of controls outlined in
the Notes to 4, as well as controls for the respondent’s education (years of schooling and a fully set of degree
dummies), and controls for mother’s and father’s education. Standard errors are clustered at the household
level. We use data on all household-year observations where no individual in the household is un-retired
and working for pay. For Columns (2)-(3), we restrict the sample to households with no working, un-retired
individuals in the previous period so that lagged wealth is accurately measured.
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Table 7: Risk Aversion, Wealth, and Stock Ownership

(1) (2) (3) (4) (5)
Dep Var: Risk Averse Tot. Wealth Tot. Wealth Owns Stocks Owns Stocks

EA Score -0.013* 0.124*** 0.121*** 0.035*** 0.034***
(0.006) (0.030) (0.030) (0.010) (0.010)

Risk Averse -0.167*** -0.073***
(0.063) (0.020)

Obs. 5321 7050 7050 7458 7458
R2 0.102 0.270 0.272 0.216 0.220

Notes: Significance stars ***, **, and * indicate statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. The dependent variable in Column (1) is a binary measure for risk aversion described in
Section 4.3. The dependent variable in Column (2) is the log of total household wealth. The dependent
variable in Columns (3)-(4) is a binary for any stock ownership. Since the risk aversion measure is time-
invariant (whether an individual ever reported the most risk averse response), we only use one observation
per individual and include a slightly different control set that includes the genetic principal components,
birth year dummies, a male dummy, interactions between birth year dummies and the male dummy, and
the own and parental education controls. All other regressions include the standard set of controls outlined
in the Notes to 4, as well as controls for own and parental education. Standard errors are clustered at the
household level. Note as well that the sample for Column (1) includes all individuals with non-missing risk
aversion data, regardless of whether they are a financial respondent.
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Table 8: Non-Financial Respondent Score and Household Wealth

Panel A: Spouse’s Score
(1) (2) (3) (4)

Dep Var: Tot. Wealth Tot. Wealth Owns Stocks Owns Stocks
EA Score 0.097*** 0.092*** 0.022* 0.019*

(0.028) (0.028) (0.011) (0.011)
EA Spouse 0.078*** 0.034***

(0.026) (0.011)
Obs. 5166 5166 5182 5182
R2 0.314 0.318 0.228 0.232
Panel B: Max Score

(1) (2) (3) (4)
Dep Var: Tot. Wealth Tot. Wealth Owns Stocks Owns Stocks
EA Score 0.097*** 0.022*

(0.028) (0.011)
Max EA Score 0.136*** 0.042***

(0.032) (0.014)
Obs. 5166 5166 5182 5182
R2 0.314 0.316 0.228 0.231

Notes: Significance stars ***, **, and * indicate statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. The dependent variable in all specifications is the log of total household wealth. All other
regressions include the standard set of controls outlined in the Notes to 4, as well as controls for own and
parental education. Standard errors have been clustered at the household level. The samples for Columns
(1) and (3) have been restricted to observations of financial respondents with non-missing values for the
spousal EA Score.
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Table 9: EA Score and Financial Literacy

(1) (2) (3) (4) (5)
Dep Var: Compound Real Diversify All Correct Inflation

Interest Interest (1)-(3) and Lending

EA2Score -0.001 0.032** 0.027 0.040* 0.080***
(0.018) (0.016) (0.021) (0.021) (0.020)

Obs. 666 667 667 663 674
R2 0.245 0.203 0.239 0.294 0.270

Notes: Significance stars ***, **, and * indicate statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. The dependent variables in Columns (1)-(3) are dummy variables indicating correct responses
for the three questions that were included together in a financial literacy module in the 2010 wave of the
HRS. The dependent variable in Column (4) aggregates these items by constructing a binary indicating
whether or not individuals got all three questions correct. The dependent variable in Column (5) indicates
a correct response to a separate module question (with different respondents) on inflation and lending (see
text for details). All regressions include the standard set of controls outlined in the Notes to Table 4 (except
for the dormant pension controls), as well as controls for own and parental education. Standard errors are
clustered at the household level.
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Table 10: EA Score and Beliefs

(1) (2) (3) (4)
Dev. from 0% Prob 50% Prob 100% Prob
Objective

Panel A: Market Up
EA2Score -0.453*** -0.004*** -0.002 -0.003**

(0.141) (0.001) (0.003) (0.001)
Obs. 39626 39626 39626 39626
R2 0.071 0.031 0.011 0.021

Panel B: U.S. Depression
EA2Score -0.343*** -0.005*** -0.002 -0.004**

(0.125) (0.002) (0.003) (0.002)
Obs. 32971 32971 32971 32971
R2 0.064 0.030 0.022 0.044

Panel C: Double Digit Inf
EA2Score -0.612*** -0.007*** 0.000 -0.007***

(0.184) (0.002) (0.004) (0.002)
Obs. 19541 19541 19541 19541
R2 0.050 0.027 0.023 0.040

Notes: Significance stars ***, **, and * indicate statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. All regressions include the standard set of controls outlined in the Notes to 4 (excluding
the dormant pension controls), as well as controls for own and parental education. The samples for all
regressions in this table include person-year observations on all respondents (not just financial respondents
with non-missing wealth data). Standard errors are clustered at the household level.
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Table 11: Beliefs and Household Wealth

(1) (2) (3) (4)
log Wealth log Wealth Owns Stocks Owns Stocks

Ever Pr Mrkt Up 0% -0.221*** -0.125** -0.101*** -0.059***
(0.055) (0.064) (0.016) (0.020)

Ever Pr Mrkt Up 100% 0.257*** 0.257*** 0.099*** 0.097***
(0.064) (0.063) (0.021) (0.021)

Ever Pr Rec 0% 0.006 0.038 -0.019 -0.012
(0.055) (0.056) (0.017) (0.018)

Ever Pr Rec 100% -0.253*** 0.001 -0.058*** 0.002
(0.059) (0.079) (0.018) (0.025)

Ever DD Inf 0% -0.084 -0.088 -0.000 -0.000
(0.067) (0.067) (0.021) (0.021)

Ever DD Inf 100% -0.208*** -0.134 -0.092*** -0.069**
(0.068) (0.092) (0.020) (0.028)

Max Dev Mrkt. Up -0.003** -0.002***
(0.001) (0.000)

Max Dev Rec. -0.009*** -0.002***
(0.002) (0.001)

Max Dev DD Inf -0.001 -0.000
(0.002) (0.001)

Obs. 14045 14045 14510 14510
R2 0.266 0.271 0.201 0.205

Notes: Significance stars ***, **, and * indicate statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. All regressions include the standard set of controls outlined in the Notes to Table 4 (excluding
the dormant pension controls), as well as controls for own and parental education. Standard errors are
clustered at the household level.
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Table 12: Household Wealth, Expectations, and Other Scores

Panel A: Correlations between Polygenic Scores:
EA Score BMI Score Cigs. Score

EA Score 1.00
BMI Score -0.18 1.00
Cigs. Score -0.09 0.03 1.00

Panel B: Other Scores, Wealth, and Expectations:
(1) (2) (3) (4)

log Wealth Dev. from Dev. from Dev. from
Objective: Objective: Objective:
Market Up Depression Double Digit Inf.

EA Score 0.086*** -0.451*** -0.312** -0.580***
(0.022) (0.144) (0.128) (0.187)

BMI Score -0.060*** 0.080 0.140 0.015
(0.021) (0.140) (0.120) (0.183)

Cigs Score -0.053** 0.070 0.132 0.047
(0.021) (0.138) (0.120) (0.177)

Obs. 15003 39171 32609 19325
R2 0.260 0.071 0.065 0.050

Notes: Significance stars ***, **, and * indicate statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. Panel A shows the cross-sectional correlations for all 8,459 individuals with non-missing values
of the polygenic scores. Column (1) in panel B replicates the basic log wealth regression from Table 4 but
now includes all three polygenic scores. Columns (2)-(4) in panel B replicate the specifications from Column
(1) of Table 10, including all three polygenic scores.
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Table 13: Pensions and Household Wealth

(1) (2) (3) (4)
Has Pension log Wealth log Wealth log Wealth

EA Score -0.004 0.095*** 0.137*** 0.117***
(0.008) (0.022) (0.034) (0.034)

DB Pension 0.343*** 2.401** 1.701
(0.038) (1.100) (1.083)

EA Score x DB -0.079** -0.059
(0.038) (0.038)

Max Dev Mrkt. Up -0.007***
(0.002)

Max Dev Rec. -0.011***
(0.002)

Max Dev DD Inf -0.005***
(0.002)

(Max Dev Mrkt. Up) x DB 0.004*
(0.002)

(Max Dev Rec.) x DB 0.005**
(0.003)

(Max Dev DD Inf) x DB 0.004**
(0.002)

Obs. 14045 14045 14045 14045
R2 0.084 0.266 0.271 0.289

Notes: Significance stars ***, **, and * indicate statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. All specifications start with the basic specification for log wealth in Column (3) of Table 4.
Standard errors are clustered at the household level. Columns (2)-(4) also include a full set of interactions
between the principal components of the genetic data and the defined benefit pension dummy. This explains
the large coefficient on DB Pension in those specifications.
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Table 14: Beliefs and Childhood SES

(1) (2) (3) (4)
Not Poverty Income Move or Help Father Unemployed

Panel A: Stock Market Up

High SES -13.868* 3.028 16.837** 5.196
(7.621) (8.036) (8.059) (7.769)

EA Score -0.779*** -0.727*** -0.778*** -0.714**
(0.282) (0.219) (0.284) (0.280)

EA × High SES -0.305 -0.381 -0.352 -0.387
(0.323) (0.320) (0.324) (0.321)

Obs. 39035 30533 38987 39145
R2 0.059 0.057 0.059 0.057

Panel B: Recession

High SES -4.048 -0.810 8.171 -0.081
(6.594) (6.868) (7.137) (6.854)

EA Score -0.763*** -0.556*** -0.720*** -0.599**
(0.237) (0.192) (0.245) (0.243)

EA × High SES 0.179 -0.092 0.134 -0.031
(0.277) (0.273) (0.282) (0.282)

Obs. 32509 26164 32419 32569
R2 0.060 0.060 0.061 0.059

Panel C: Double Digit Inflation

High SES -12.452 15.732 -3.961 -1.200
(9.971) (9.721) (11.293) (10.121)

EA Score -0.636* -0.511** -0.936** -0.759**
(0.361) (0.259) (0.382) (0.357)

EA × High SES -0.508 -1.215*** -0.136 -0.391
(0.416) (0.375) (0.431) (0.413)

Obs. 19290 17454 19254 19312
R2 0.043 0.045 0.043 0.042

Notes: Significance stars ***, **, and * indicate statistical significance at the 0.01, 0.05, and 0.10 levels,
respectively. All specifications start with the basic specification for deviations from objective beliefs found
in Column (1) of Table 10. Standard errors are clustered at the household level. All specifications include
a full set of interactions between the principal components of the genetic data and the High SES dummy.
This explains the large coefficients on High SES dummy in those specifications.
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Figure 1: Notes: EA Score Distribution among HRS Individuals.
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Figure 2: Notes: Wealth Distribution among HRS Individuals.
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Figure 3: Notes: Log Wealth Distribution among HRS Individuals.
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Online Appendix:
“Genetic Ability, Wealth, and Financial Decision-Making”

By: Danny Barth, Nicholas W. Papageorge and Kevin Thom

A Additional Details on GWAS and Construction of
the EA Score

What follows is nearly identical to the genetic data appendix in an earlier paper, Papageorge
and Thom (2016), which uses the same genetic score used in the current paper. We reprint
the appendix here solely for the reader’s convenience In this appendix, we provide a brief
introduction to molecular genetics and the kinds of genetic data that we use in this study.
We repeat some portions of Section 2 so that this appendix can provide a self-contained
introduction to GWAS and the EA Score used in our analysis. First, we describe some basic
features of the human genome. Next, we discuss how statistical gene-discovery projects can
produce scores that are useful for the prediction of economic outcomes such as educational
attainment. We highlight how recent advances permit credible and replicable inference.

The human genome consists of approximately 3 billion nucleotide base pairs spread out
over 23 chromosomes. Each individual possesses two copies of each chromosome, one from
each parent. A gene is a subsequence of base pairs within a chromosome. On average, each
gene is made up of over 100,000 base pairs. Each base pair can either be an adenine-thymine
(AT) pair, or a guanine-cytosine (GC) pair. Thus, the human genome can be thought of as
a series of 3 billion genetic addresses, each of which can contain one of two nucleotide pairs.

A particular location in the genome can be referred to by a name (e.g. rs7937), which
indicates its position in the genome. At the vast majority of such locations (about 99%),
there is no variation in the observed nucleotide pair across humans or across chromosomes
within a human. A single-nucleotide polymorphism (SNP) exists when there are differences
in the nucleotide pair present at a particular location on the genome. An allele refers to one
of the variants that may be present at a particular SNP. If AT is more commonly found at a
particular SNP, it is referred to as the major allele, and then GC is referred to as the minor
allele.

A traditional approach to the discovery of gene-behavior associations rests on examining
candidate genes. Under this paradigm, researchers use some knowledge of the relevant bio-
logical processes to suggest places in the genome that might contain SNPs associated with a
particular outcome. Unfortunately, this approach to identifying gene-economic outcomes has
also generated a large number of reported associations that have failed to replicate outside
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of their discovery samples. This problem has been so widespread that an editorial statement
from the journal Behavior Genetics stated that “The literature on candidate gene associ-
ations is full of reports that have not stood up to rigorous replication,” and that “it now
seems likely that many of the published findings of the last decade are wrong or misleading
and have not contributed to real advances in knowledge,” (Hewitt, 2012). This pattern has
emerged, in part, because traditional candidate gene studies have been severely underpow-
ered to detect real genetic effects. Sample sizes in general have been too small relative to
the true effect sizes of individual SNPs, making it likely that statistically significant associ-
ations are the result of chance. This problem is exacerbated when studies search over many
candidate genes, creating a multiple hypothesis testing problem that increases the likelihood
of finding false positive results (Benjamin et al., 2012).

An alternative to candidate genes is an approach called a genome-wide association study
(GWAS). Under the GWAS methodology, researchers scan the entire genome for SNPs that
are associated with a particular phenotype (trait or outcome), but adopt strong measures
to deal with multiple hypothesis-testing. For a particular outcome of interest, yi, and for a
set of observed SNPs, {SNPij}NJ

j=1, a GWAS study proceeds by obtaining estimates of NJ

separate regressions of the form:

yi = µX ′i + βjSNPij + εij (1)

Here SNPij measures the number of copies of a reference allele possessed by individual i for
SNP j. For example, if the reference allele at SNP j is AT , then SNPij could take the values
0, 1, or 2. The maximum value of 2 reflects the fact that an individual can have at most two
copies of the reference allele — one on each inherited chromatid. Additionally, Xi is a vector
of controls, including principal components of the genetic variables {SNPij}NJ

j=1. Principal
components of the genetic data are added to control for population stratification. For ex-
ample, it could be that SNPij is correlated with a particular ethnicity or ancestry group.
Failure to control for the principal components could generate observed SNP-phenotype re-
lationships that reflect the influence of broader ethnic differences rather than the influence
of a particular genetic marker.

After obtaining estimates for all NJ versions of equation (1), those estimated coefficients
β̂j with sufficiently small p-values are said to reflect relationships that are genome-wide sig-
nificant. Given the huge number of regressions run under this methodology, the significance
thresholds in modern GWAS are typically very strict. A conventional threshold is 5× 10−8.
This approach has become popular and as a consequence of its stringency requirements,
has led to the discovery of a number of credible genetic associations. For example, the
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well-known FTO gene for obesity was discovered through a GWAS, despite the lack of any
existing biology that would have suggested it as a candidate gene (Benjamin et al., 2012).

Existing work has demonstrated the importance of credibly identified SNPs for several
economic outcomes. These SNPs either directly emerged from a GWAS, or were candidate
genes that were validated by later GWAS results. An established literature documents a
number of credible genetic associations with smoking behaviors (Bierut, 2010; Thorgeirsson
et al., 2010). Fletcher (2012) demonstrates that a SNP associated with smoking intensity also
appears to moderate the effect of tobacco taxes. More closely related to our work, another
set of studies suggests indirect linkages between genetic variants and human capital. For
example, Fletcher and Lehrer (2011) use a set of SNPs associated with health outcomes to
provide exogenous within-family variation to estimate a causal relationship between health
and education. Finally, Thompson (2014) shows that a variant associated with the MAOA
gene appears to moderate the relationship between income and education.

Recent work using GWAS has discovered some of the first direct associations between
specific SNPs and education. Rietveld et al. (2013) identified three SNPs (rs9320913,
rs11584700, rs4851266) attaining genome-wide significance in a GWAS for educational at-
tainment. Follow-up work by the same team (the Social Science and Genetics Consortium)
has recently extended the Rietveld et al. (2013) study to perform an educational attainment
GWAS with a sample size of 293,723. This follow-up study, Okbay et al. (2016), has dis-
covered 74 SNPs that attain genome-wide significance. We build our analysis here on the
gene-education associations found in this follow-up study.

One common technique adopted in the GWAS literature is to take observed SNPs and
the estimated GWAS coefficients (the β̂j) and aggregate them into a polygenic score that
can be used for prediction. Typically these scores take the following form:

PGSi =
∑

j

β̃jSNPij (2)

where β̃j is some transformation of the underlying GWAS coefficients. The β̂j estimates
are typically corrected to account for correlation between SNPs and prevent over or under
prediction. The follow up study Okbay et al. (2016) combines all genotyped SNPs into a
polygenic score that attains a predictive power of up to 3.85% of the variation in educational
attainment.29 In our study, we use SNP weights β̂j that have been adjusted using a technique
called LD Pred (Vilhjalmsson, 2015), and applied to the genetic data in the HRS.30 We refer

29We note as well that the polygenic score that we use in this study combines all SNPs analyzed in
Okbay et al. (2016), not just those reaching genome-wide significance. As noted in Okbay et al. (2016), this
maximizes the predictive power out of sample.

30We would like to especially thank Aysu Okbay, a member of the Social Science and Genetics Consortium,
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to the polygenic score created using these weights as the EA Score, where “EA” stands for
“educational attainment”. We refer to it this way since other polygenic scores exist which
capture genetic variation explaining different outcomes.

B Data Issues

This appendix provides details on the construction of our wealth data and our measurement
of stock market participation. Our data are largely constructed from the RAND wealth
and income files. The RAND files are carefully cleaned and consistently coded by RAND
Corportation and are available for public use. The RAND files have been used in both
academic and industry publications, and ensure comparability and consistency across HRS
waves and research projects. We refer the reader to the RAND codebook and documentation
for further details.

One important shortcoming of the RAND wealth files is the exclusion of employer-
sponsored retirement plan account balances. While the RAND wealth files do include the
balances of IRAs and other non-employer-sponsored plans, wealth accumulated in employer-
sponsored 401k, 403(b), and other such accounts are not included. For households at or
near retirement, such accounts can be a significant source of wealth. Further, such accounts
may be the only vehicles through which households invest in the stock market, and mea-
sures of stock market participation will understate true participation if these plans are not
considered.

Unfortunately, data on employer-sponsored retirement plans are not asked in every wave,
and are sometimes inconsistently coded across waves. The remainder of this section focuses
on our methodology for coding retirement account balances and stock market participation
inferred from those accounts.

B.1 Wealth in Retirement Accounts

Broadly speaking, there are two types of retirement plans: defined benefit plans, such as
traditional pensions (which the HRS calls type A plans), and defined contribution plans,
such as 401k and 403(b) plans (which the HRS calls type B plans). We discuss each type of
plan in turn.

for graciously generating and sharing this score with us.
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B.1.1 Defined Benefit Plans

To deal with issues arising from type A style retirement plans, our sample includes only
households fully in retirement (households in which no member of the household is currently
working). We exclude working households because expected benefits from defined-benefit
pension plans are likely to be both an important source of wealth and noisily measured. For
retired households, our assumption is that those who report receiving pension income were
included in defined-benefit pension plans at some point during their working lives, and those
who do not receive pension income in retirement were not included in such plans. To the
extent that households misreport pension income, for example if income from an annuity
converted from a 401k plan is reported as pension income, or if households have delayed
receiving pension benefits until some future date, our assignment of households participating
in type A plans will be biased. Further, because the household earns a guaranteed stream of
income regardless of the underlying investments that support that income (and because we
do not observe these underlying investments), we do not consider a household’s participation
in type A pension plans to be participation in the stock market.

We include retirement income in our household wealth measure by calculating the price
of an actuarially fair annuity based on the entirety of household retirement income, which
includes pension income, annuity income, and income from social security. We follow Yogo
(2016) by calculating the present discounted value of this income based on a 1.5% annual
risk-free rate of return, and discount income in each year by the probability of the recipient
surviving until that year.31 Specifically, we calculate the present value of retirement income,
Pt, as:

Pt = Yt

T−t−1∑
s=1

∏s
u=1 pt+u

R
, (3)

where Yt is total retirement income, pt is the recipient’s survival probability in period t and
is a function of gender, birth cohort, and age, and R = 1.015 is the annual risk-free rate of
return.

B.1.2 Defined Contribution Plans

Wealth in defined-contribution style plans is a bit trickier. Households may have plans
associated with multiple previous employers. To calculate comprehensive measures of wealth
and stock market participation, we would like to know both the balances and asset allocations

31We differ from Yogo (2016) in that we use the probability of death of the individual receiving the income,
rather than of the female spouse.
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of all employer-sponsored type B plans from all previous jobs. Unfortunately, this is not
always possible.

In years 1996, 1998, and 2002-2010 (comprising even-numbered years), we have the high-
est quality data on total balances in employer-sponsored type B retirement plans.32 In these
years, our wealth data include balances of employer-sponsored plans that are still maintained
through that employer, and have not been converted to annuities or rolled over into IRAs.
The HRS refers to such plans as dormant plans. Unfortunately, the value of dormant plans
at employers prior to retirement are not asked in 1992, 1994, and 2000.

Dormant plans also present problems for measurement of stock market participation.
While in years 2002-2010 the stock allocation within a respondent’s retirement plan at the
current employer is observable for working households, the stock allocation in dormant plans
for retired households is not. This means our stock market participation variable does
not include stock ownership in dormant plans. The stock market participation variable is
determined only by information in the assets and income section of the data, which comprises
only stock and stock mutual funds as well as the stock allocation in IRA and Keogh accounts.

32In 2012, the pension data were changed to an entirely new format.
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