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Abstract

I investigate the effect of ambiguity on subjects’ willingness to
trade under different information conditions. The results confirm
the prediction of a wide set of theoretical models, that ambiguity
aversion reduces willingness to trade in incomplete markets. Partic-
ipants choose significantly wider bid-ask spreads when return distri-
butions are ambiguous rather than objectively known. This effect
also persists when subjects learn probabilities progressively. How-
ever, belief updating generates more-extreme quotes that are consis-
tent with a particular updating rule–conditional smooth preferences.
These findings highlight the role of gradual information release for
belief confidence and under- and overreaction in ambiguous markets.
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1 Introduction

How do subjects update beliefs under ambiguity? Under risk, that is when
the distribution of the states of nature is known, Bayes Rule is the con-
ventional benchmark. In ambiguous environments, however, a multitude of
updating rules is conceivable (Jaffray, 1989; Gilboa and Schmeidler, 1993;
Epstein and Le Breton, 1993; Pires, 2002; Maccheroni et al., 2006; Epstein
and Schneider, 2007; Hanany and Klibanoff, 2007; Hanany et al., 2009;
Ghirardato et al., 2008; Klibanoff et al., 2009; Siniscalchi, 2011).

Experimentalists have compared decisions under ambiguity to decisions
under risk in static decision settings (see Camerer and Weber, 1992 for a
survey). Attitudes toward ambiguity are heterogeneous but the extensive
evidence in Ellsberg-type experiments shows that a substantial share of
decision-makers dislike ambiguity. In light of these findings, a theoreti-
cal literature discusses potential effects of ambiguity aversion on financial
decision-making (e.g. Cao et al., 2005; Easley and O’Hara, 2010; Ui, 2011).
The ambiguity-averse decision-maker shuns ambiguous settings. In com-
plete markets, for instance, he may reallocate his portfolio to fully insure
against ambiguous states. In incomplete markets, reducing his partici-
pation in ambiguous markets might be the sole way to avoid ambiguous
trades.

Alternatively, in the urge of resolving uncertainty, the ambiguity-averse
decision-maker may seek further information. The extent to which ambi-
guity attitudes are robust to incoming information then depends on the
way subjects update beliefs and, as a result, determines whether ambiguity
effects persist in the face of market feedback.

Two main paradigms of Bayesian updating under ambiguity –full Bayesian
updating (henceforth FBU, Jaffray, 1989; Pires, 2002) and maximum likeli-
hood updating (henceforth MLU, Gilboa and Schmeidler, 1993)–may result
in very different behavior.1 With FBU, subjects update a set of priors,
prior by prior, and retain ambiguity in their posterior beliefs. The rel-
evant beliefs in the resulting set of posteriors are eventually determined
by ambiguity preferences. With MLU, on the other hand, subjects con-

1Epstein and Schneider (2003) define the condition of rectangularity under which
FBU and MLU make identical predictions.
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sider a subset of priors that maximizes the ex-ante probability of receiving
the information. Additional information leads an agent to discard unlikely
priors and to perceive substantially less ambiguity. Eventually, he will con-
ceive a single posterior belief and will not perceive any ambiguity at all.
In this way, the arrival of information may generate a singleton posterior
and eliminate any incentives to avoid ambiguous settings. A third updat-
ing rule–conditional smooth preferences (CSP)–requires more structure on
the preference form but makes predictions in between. Smooth preferences
imply that subjects hold beliefs over the set of possible priors. With the
arrival of additional information, agents do not only update the support
of possible probabilities but also their beliefs over these probability values.
Agents may continue to perceive some ambiguity in posteriors but beliefs
over the set of posteriors may emphasize some posteriors more than others
and, hence, reflect more confidence.

This paper offers a systematic comparison of willingness to trade as-
sets with ambiguous and unambiguous return distributions, in a stylized
incomplete market with one uncertain asset and money. A 2x2 design al-
lows me to compare decisions across two dimensions. The first dimension
varies the degree of uncertainty by comparing decisions under risk ver-
sus ambiguity. The second dimension distinguishes between situations in
which information about return distributions is released at once and those
in which information is processed sequentially. The design is implemented
with two treatments, such that the first dimension of variation is analyzed
in a within-subject comparison and the second dimension between sub-
jects. Treatment “No Learning” (NL) investigates the relation between
ambiguity and investment decisions when belief updating is not required.
This treatment serves as benchmark to identify subjects’ general attitude
toward ambiguity in a static framework. Treatment “Learning” (L) ex-
amines ambiguity effects when investors receive information gradually over
time and engage in belief updating.

To understand the impact of learning, the experiment studies invest-
ment decisions under ambiguity across two information conditions: one in
which investors base their decisions on given probabilities; and another in
which investors receive additional information before investing.

The experimental design deviates from standard approaches of measur-
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ing ambiguity attitudes with pairwise choices. In a setting that is ubiq-
uitous in financial markets, subjects submit a bid (i.e. their willingness-
to-pay) and an ask quote (i.e. their willingness-to-accept a short-sell) for
an uncertain asset. In some rounds, participants learn the objective prob-
ability distribution of the asset’s value and, thus, invest in a risky asset.
In other rounds, they receive imprecise information about the distribution,
which makes the latter ambiguous. While, in treatment NL, information
about the distribution is revealed at once, participants in treatment L learn
the distribution across two stages: they first receive information about
a prior distribution and then observe an additional signal. The bid-ask
spread is then used to compare attitudes toward risk and ambiguity, with
and without belief updating.

The result adds to the evidence of ambiguity aversion found in a multi-
tude of Ellsberg experiments (i.e. Chow and Sarin, 2002; Halevy, 2007; and
Camerer and Weber, 1992 for a review of the literature). Consistent with
ambiguity aversion, participants express a lower willingness to trade by
choosing significantly wider bid-ask spreads when returns have ambiguous
distributions. The average ambiguity premium in long and short positions
amounts to 20% and 16.4% of the expected value, respectively, and is in line
with previous findings (Yates and Zukowski, 1976; Bernasconi and Loomes,
1992 and the references in Camerer and Weber, 1992). The ambiguity pre-
mium over and above the risk premium cuts down trade by, on average, 12
percentage points and mean profits by 30%. These findings confirm that
ambiguity aversion is well suited to model freezes in trading activity and,
albeit not surprising, are a necessary benchmark for the comparison with
decisions based on updated beliefs.

The results in Treatment L cast doubt on both belief updating theories,
FBU and MLU. Ambiguity aversion remains robust to belief updating,
showing that subjects were not predominantly MLU agents. MLU predicts
small to zero spreads but subjects chose the same average spread when the
same ambiguous distribution was learned progressively. The evidence in
favor of FBU, too, is limited: although spreads for ambiguous assets with
and without learning do not significantly differ, the level of quotes do. Bids
and asks are significantly lower (higher) after the arrival of a low (high)
signal. Hence, when learning occurs, subjects displayed similar spreads but

4



chose more-extreme quotes. This result is at odds with FBU.
Chosen quotes are rather consistent with updating second-order beliefs

about ambiguous probabilities. CSP allows subjects to retain a spread but
generates, on average, more-extreme quotes whenever new information is
consistent with the expected prior. A bulk of 36.87% decisions for ambigu-
ous prospects was centered around Bayesian updates of the mid-prior. The
remainder of quotes disclosed heterogeneity in the way of updating ambigu-
ous beliefs: One noticeable group was insensitive to additional information
and refrained from trading; another group behaved like MLU agents by
updating extremely and choosing to trade at all prices.

In sum, the results identify a negative relation between ambiguity and
willingness to trade that is robust to the information condition. Grad-
ual information processing may nevertheless mitigate ambiguity effects by
affecting subjects’ confidence in final beliefs. That is, Bayesian updat-
ing of recursive preferences may spawn more aggressive bidding despite
ambiguity-averse preferences.

Subjects’ more extreme reactions to gradual information release have
also direct implications for discretionary disclosure policy in financial mar-
kets. Miller (2002) and Kothari et al. (2009) find evidence for an asymmet-
ric disclosure of good and bad news: while managers disclose good news
immediately, they accumulate bad news before releasing it. The experimen-
tal findings indicate that asymmetric disclosure has effects beyond that of
supporting managers’ careers: it may dampen negative but foster positive
stock price reactions.

This paper relates to two strands of research. One strand examines the
effect of ambiguity on investment decisions in a static setting. This pa-
per’s theoretical predictions is based on Dow and Werlang (1992) that uses
ambiguity aversion in form of Choquet expected utility (CEU) to model
discontinuity in investors’ willingness to trade. Besides CEU, other models
of ambiguity aversion (e.g., maxmin expected utility (MEU), α-maxmin
expected utility (α-MEU)) also depart from expected utility theory by
modeling decision makers who consider different distributions for opposite
actions: one for going long and one for going short. The ambiguity-averse
seller short-sells at higher prices, while the ambiguity-averse buyer displays
a lower willingness to pay.
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Two other experimental studies analyze the effects of ambiguity on fi-
nancial decisions. Ahn et al.’s (2014) individual-decision experiment con-
firms the heterogeneity in ambiguity attitudes, providing evidence for sub-
jective expected utility (SEU), ambiguity aversion, and for pessimism.
Bossaerts et al. (2010) show in their market experiment that heterogene-
ity in ambiguity attitudes affects not only portfolio choices but also asset
prices. The design in the present experiment deviates from stantard ap-
proaches of measuring ambiguity attitudes. Here, the design identifies am-
biguity aversion not through portfolio allocation but with chosen spreads.
It focuses on individual willingness to trade and, thus, extends the study
of ambiguity aversion to markets that do not provide the opportunity to
fully insure against ambiguous states. A related study is Sarin and Weber
(1993). They find that bids and the resulting market prices for ambigu-
ous assets are consistently lower in sealed-bid and oral double auctions,
although ambiguous and unambiguous assets have identical expected pay-
offs.2 As they conclude, subjects are less willing to pay for ambiguous
assets that they apparently consider more risky. Another related work is
the experimental study of Eisenberger and Weber (1995). They find no
interaction between ambiguity and the buying/selling price ratio. As their
focus lies on the buying/selling price ratio, willingness to pay and will-
ingness to accept are elicited from different default positions. This study,
in contrast, focuses on the individual willingness to trade by keeping the
starting position constant and state-invariant. This allows me to test the
prediction made in Dow and Werlang (1992) under varying conditions.

Another strand of the literature discusses belief updating under ambigu-
ity. The findings in this experiment support the conjecture in Epstein and
Schneider (2007) that information affects the degree of confidence, which
in turn may differently affect investment and stock market participation.
Cohen et al. (2000) use a dynamic extension of the Ellsberg experiment
to differentiate between FBU and MLU behavior. They, too, find hetero-
geneity in updating behavior. The behavior of a non-negligible number of
subjects is consistent with MLU but FBU seems to be the more predomi-

2Note, in their oral double auctions, subjects are endowed with assets. In that case,
ambiguity-averse traders want to get rid of their uncertain endowment and drive down
the offer price.
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nant updating rule in their implementation of the Ellsberg experiment. The
current paper emphasizes the importance of these two updating rules for
trading activity and provides another framework to distinguish between
them and also CSP. In De Filippis et al.’s (2016) experiment with both
social learning and private signals, subjects’ updated beliefs are more con-
sistent with likelihood ratio test updating, a generalization of MLU. One
related experiment also studies learning in ambiguous asset markets: Bail-
lon et al. (2013) investigate learning with a natural source of uncertainty.
In their individual decision-making design, subjects submitted ask prices
for options on initial public offerings (IPOs). Using the neo-additive model
(Chateauneuf et al., 2007), they find no evidence for pessimism (ambiguity
aversion). Furthermore, whereas pessimism is not affected by the arrival
of new information, sufficient information reduces likelihood insensitivity.
The following experiment adds to this literature and contrasts markets with
ambiguity shocks and ambiguous markets with gradual information release.
Moreover, it compares learning in ambiguous markets to learning in risky
markets to identify learning effects that are specific to ambiguity.

The paper is organized as follows. Section 2 presents the stylized deci-
sion model and the theoretical predictions. Section 3 describes the imple-
mentation of the experiment. The results are presented in Section 4, and
Section 5 discusses their implications and concludes.

2 A stylized decision problem

2.1 Investing in ambiguous versus risky prospects

Consider a simple investment opportunity in a market with two states and
one asset. The asset has an uncertain value V ∈ {VL, VH}. The probability
for the high-value state corresponds to Pr(V = VH) =: π.

The agent is endowed with cash W0 and has the opportunity to invest
in a single unit of the asset. He tenders both a bid quote, b, and an ask
quote, a, before knowing the transaction price, p. The price p is exogenous
and is drawn from a uniform distribution i.e., p ∼ U [VL, VH ]. The agent’s
demand corresponds to:
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X =


+1 if p ≤ b

−1 if p ≥ a

0 otherwise.

The agent is a price taker: at the end, he will pay a price p that he
cannot influence and that may differ from his quotes b and a. The quotes b
and a merely determine the probability that a buy or a short-sale (hence-
forth sell) occurs. A higher bid b, for instance, increases the probability of
buying, as the random price p is more likely to fall below it. Note that the
investor will always trade whenever the bid equals the ask. His wealth at
the end of the period is W1 = W0 + (V − p)X.

Denote Π∗ as the agent’s subjective set of beliefs about π, the prob-
ability for the high-value state. We discuss in the following the optimal
investment strategy under risk (for EU agents) and ambiguity (for MEU
and recursive expected utility (REU) agents with kinked and smooth in-
difference curves, respectively).

2.1.1 Expected Utility

For the benchmark analysis of expected utility, assume that the agent holds
a single probability belief π–i.e., Π∗ is a singleton. Under risk neutrality,
he buys at prices below his expected valuation, sells at prices above it, and,
therefore, sets a∗ = b∗ = E[V ]. A risk-averse agent, on the other hand,
chooses a strictly positive spread between bid and ask, with b∗ < E[V ] and
a∗ > E[V ] (the simple proof is in Appendix B.1).

2.1.2 MEU as a model with kinked indifference curves.

Optimal values of bid and ask may change when π is ambiguous. If the
agent considers a range of probabilities Π∗ = [πl, πh], bid and ask quotes
adjust to his ambiguity preferences. Different models of ambiguity aversion
will then predict different quotes. In general, models with kinked indiffer-
ence curves (e.g., Choquet expected utility (CEU), maxmin expected utility
(MEU), α-maxmin expected utility (α-MEU) ) depart from expected util-
ity theory by modeling decision makers who consider different distributions
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for opposite actions: one for buying and one for selling. The ambiguity-
averse seller short-sells at higher prices, while the ambiguity-averse buyer
displays a lower willingness to pay. In between, there is a range of prices at
which buyer and seller do not agree on trade. The present argumentation
follows Dow and Werlang (1992) but uses the intuitive model of maxmin
expected utility (MEU - Gilboa and Schmeidler, 1989) instead of Choquet
expected utility.

An MEU agent evaluates different actions with different probability
distributions. He considers the worst possible expected outcome, which
differs for the two actions of buying and selling. A risk-neutral MEU agent
buys if

p ≤ min
∀π∈[πl,πh]

E[V |π].

He sells if
p ≥ max

∀π∈[πl,πh]
E[V |π].

The expected payoff functions of ambiguity-averse buying and selling
strategies are shifted downwards, relative to the case of expected utility
(see Figure 1). Due to the fact that willingness to buy and willingness to
sell do not intersect at a single strictly positive price, there is a region of
prices at which zero holding of the asset is optimal (Dow and Werlang,
1992; see Figure 2).3

E@V » p
l
D E@V» p

h
D Price

Exp. Payoff

Buy w. MEU

Sell w. MEU

Buy HEUL
Sell HEUL

Figure 1: Expected payoff of a buy and a sell
as a function of the price for risk-neutral EU
(dashed lines) and MEU (solid lines) agents.

3When the starting position is risky instead of riskless, the general result holds as long
as the returns of risky and ambiguous assets are negatively correlated. The possibility of
hedging the ambiguous asset with the risky one decreases the range of non-participation
but does not fully eliminate it (Epstein and Schneider, 2010).
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(a) EU (b) MEU

Figure 2: Expected payoff with optimal strategy of risk-neutral (a)
EU and (b) MEU agents.

2.1.3 REU as a model with smooth indifference curves.

Two of three updating rules discussed in Section 2.2., FBU and MLU, can
be applied to preferences with both kinked and smooth indifference curves.
The third one, CSP, requires preferences to be smooth. Models of smooth
ambiguity preferences, also referred to as recursive expected utility (REU)
are discussed i.a. in Klibanoff et al. (2005) (henceforth KMM).

An REU agent who considers a set of priors assigns to each single value
a probability that it is the true objective probability. In the following, I
refer to these beliefs over probabilities as second-order beliefs. Ambiguity
is perceived when these second-order beliefs are non-degenerate. Follow-
ing the model of smooth preferences in KMM, a strictly increasing and
concave function φ(·) is used to represent ambiguity-averse second-order
preferences. The agent’s value function is assumed to take the double ex-
pectational form:

∫ πh

πl

φ
(
EπU(·)

)
ψ(π)dπ, (1)

where ψ(π) represents the subjective belief density over the set of priors
[πl; πh]. The operator Eπ computes the expected value with respect to a
specific Bernoulli distribution f(π) with success probability π.

As in standard expected utility models, attitudes towards risk are cap-
tured by the concavity of a von Neumann-Morgenstern utility function

10



U(·). In addition, attitudes towards ambiguity are captured separately by
the function φ(·). Agents assign subjective second-order beliefs ψ(π) to
some probability distribution π. In their decision-making, they evaluate
subjective expectations over expected utilities. Ambiguity aversion cor-
responds to a dislike of spreads around the mean expected utility and is
reflected by the concavity of the function φ(·).

Section B.2 in the Appendix shows that ambiguity-averse smooth pref-
erence produce a wider spread than the spread chosen under risk under the
assumption that second-order beliefs are centered around the midpoint in
the range of priors. This assumption is in line with the principle of insuf-
ficient reasons, under which agents assign equal probabilities to mutually
exclusive events if they have no explicit reason to do differently.4 Hence,
non-degenerate second-order beliefs will induce the ambiguity-averse sub-
ject to choose a wider spread than he would have chosen at the expected
prior.

Given risk neutrality, models of ambiguity aversion predict wider spreads
for ambiguous than for unambiguous prospects. Predictions under risk
aversion, however, depend on the preference model and can vary widely.
For preferences with kinked indifference curves, predictions under risk aver-
sion depend on the shape of the indifference curves. For smooth ambiguity
preferences such as those studied in KMM, the spread converges to the
spread of an expected utility maximizer when ambiguity aversion converges
to neutrality. The main objective of the experiment is not to identify kinked
versus smooth preferences but to generally compare spreads for ambiguous
and unambiguous assets. Differences in spreads are used to test whether
ambiguity leads to a premium that is, on average, larger than the risk
premium.

2.2 Introducing belief updating

Consider, now, an environment in which the agent receives an informative
signal prior to investing. The signal s ∈ {ϑL, ϑH} is binary, symmetric and

4Henceforth, the notion "mean-preserving" refers to "midpoint-preserving" in this
context.

11



correct with probability q = P (s = ϑL|V = VL) = P (s = ϑH |V = VH).
Henceforth, the prior and posterior beliefs are denoted with Pr(V = VH) =:
µ and Pr(V = VH |s, µ) =: ρ, respectively.

For exposition, predictions are presented for risk-neutral EU, MEU and
REU agents. The difference in predictions also holds under risk aversion.

2.2.1 Bayesian updating

The risk-neutral EU agent who has a single prior belief µ applies Bayes’
rule, then quotes a bid and an ask b = a = E[V |s]. That is, he adjusts the
quotes to information but holds a zero spread before and after information.
A risk-averse EU agent holds the same non-zero spread for the same belief
value, regardless of final beliefs being exogenously given or endogenously
updated.

In contrast, if the prior is ambiguous, optimal quotes depend on the
way that the agent updates ambiguous beliefs. The literature has pro-
posed various updating rules (Jaffray, 1989; Gilboa and Schmeidler, 1993;
Epstein and Le Breton, 1993; Pires, 2002; Maccheroni et al., 2006; Epstein
and Schneider, 2007; Hanany and Klibanoff, 2007; Hanany et al., 2009;
Ghirardato et al., 2008; Klibanoff et al., 2009; Siniscalchi, 2011). Here, I
review full Bayesian updating and maximum likelihood updating–two main
concepts that do not require any specific preference model. Moreover, this
two paradigms make maximum opposite predictions with respect to the
spread. I also discuss conditional smooth preferences–an updating rule that
imposes more structure on ambiguity preferences but makes predictions in
between.

2.2.2 Full Bayesian updating

Agents with multiple priors apply FBU when they update prior by prior to
end up with a set of posteriors. When an agent considers solely the support
of prior probabilities (without having second-order beliefs over priors), he
will update the two extreme priors to two extreme posteriors. Therefore,
unless q = 1, FBU does not fully eliminate ambiguity. The choice of
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the relevant posterior and, hence, the evaluation of an action depend on
ambiguity preferences. For instance, an MEU agent with a high signal
(s = ϑH) buys an asset if

p ≤ min
µ∈[µl,µh]

E[V |s = ϑH , µ].

He then bids b = E[V |s = ϑH , µl]. Analogously, his ask corresponds to
a = E[V |s = ϑH , µh], with b < E[V |s = ϑH ,

µl+µh
2 ] < a.

The MEU agent chooses a non-zero spread both before and after the
updating. Its value depends on Π∗, the set of probabilities that he considers
possible.

FBU, which does not require second-order beliefs, is a relevant bench-
mark because the experimental design does not explicitly encourage sub-
jects to conceive second-order beliefs. Moreover, it does not induce a spe-
cific shape of second-order beliefs. For completeness, I discuss in the follow-
ing how an REU agent would apply CSP assuming symmetric second-order
beliefs.

2.2.3 Conditional smooth preferences

Assume that second-order beliefs induce an expected prior that equals the
midpoint of Π∗, the set of prior values. Albeit simplistic and not induced,
this assumption is not unreasonable. For instance, under the principle
of insufficient reasons, subjects assign equal probabilities to each of the
possible prior values as long as they have no reasons to do differently.

For a simple illustration, assume, in particular, that subjects have uni-
form second-order beliefs. Upon learning the range of possible priors, they
deem every single value within this range equally likely to be the true objec-
tive probability. Consider, for instance, uniform second-order beliefs when
the prior µ ∈ [0.15, 0.85]. The arrival of a high signal (s = ϑH) affects
primarily second-order beliefs: Within the support that is updated upon a
high signal, high values become more likely to be the true objective prob-
ability than low values. The updating of second-order beliefs will in turn
have two implications. First, the high signal shifts the support of possi-
ble probabilities to higher values. Second, the asymmetry in second-order
beliefs assigns more weight to higher probability values. Figure 3b depicts
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final second-order beliefs after a low and a high signal.

0.2 0.4 0.6 0.8 1.0
Prob.

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Density

(a) Prior µ ∈ [0.15, 0.85]

0.2 0.4 0.6 0.8 1.0

Prob.

1

2

3

4

Density

f Hr»s=JlL
f Hr»s=JhL

(b) Posterior ρ ∈ [.05, .65] and [.35, .95]

Figure 3: Second-order beliefs over posteriors given uniform second-order
beliefs over priors.

Intuitively, processing information has two effects under smooth prefer-
ences: incoming information leads to a revision of second-order beliefs that
affects not only the support of probabilities but also other moments like
the mean belief (see Section B.3 in the Appendix for a formal exposition of
these two effects). When incoming information is consistent with prior in-
formation, second-order beliefs become more asymmetric and the decision
maker holds, on average, more-extreme beliefs. Yet, as long as second-order
beliefs remain non-degenerate, the risk-neutral but ambiguity-averse REU
agent continues to choose a spread after the updating process.

2.2.4 Maximum likelihood updating

MLU corresponds to an extreme case of CSP in which agents behold only
the most likely probabilities. With MLU, the information received pins
down the prior that will be updated. The prior that has ex-ante the high-
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est probability of generating the informational event is given ex-post the
highest likelihood. In our specific setting, an agent observing a high sig-
nal (s = ϑH) assigns the highest likelihood to the highest prior µh. The
agent, therefore, postulates a single posterior whenever a single prior max-
imizes the likelihood of having generated the informative event. In that
case, signals eliminate any perception of ambiguity. The agent adjusts his
belief to one of the two extremes, depending on the signal being high or low.

The optimal bid, then, satisfies:

p ≤ E[V |µ∗, s] with µ∗ = arg max
µ∈[µl,µh]

`(µ|s),

where `(µ) represents the likelihood of a prior. The same prior µ∗ satisfies
the likelihood in the condition for the optimal ask:

p ≥ E[V |µ∗, s] with µ∗ = arg max
µ∈[µl,µh]

`(µ|s).

Hence, a risk-neutral MLU agent with (s = ϑH) and a unique posterior
belief ρ(µ∗, s = ϑh) chooses equal bid and ask b = a = E[V |µ∗, s = ϑH ].

Thus, a fundamental difference between FBU and MLU in this setting
is that different factors determine the ranking of states. When an agent
applies FBU, the ranking of states depends on his ambiguity preferences
and is determined by the long or short position (Mukerji and Tallon, 2001).
An agent using MLU ranks the states according to his information.

2.3 Hypothesis and treatment effect

Both the bid-ask spread and the level of quotes are informative about
the updating behavior. However, conclusions about updating behavior can
only be drawn if subjects invest differently under risk and under ambiguity–
without information update. We therefore first study the effect of ambigu-
ity on chosen quotes.

As discussed in Section 2.1, under the assumption of risk neutrality,
ambiguity aversion introduces a bid-ask spread. In the case of risk-averse
preferences, ambiguity aversion leads to wider spreads than the spread
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chosen at the mid-probability. Here, the analysis of ambiguity aversion
goes beyond any spread increase that can be rationalized with subjective
expected utility. Consider, for instance, an ambiguous set of probabilities
[πl, πh] that encompasses the probability π = .50, at which theory predicts a
maximum spread with risk-averse utility functions. If the mid-probability
of the set differs from 50% (i.e.,

(
πl+πh

2

)
6= .50), a subjective belief of

Π∗ = .50 can rationalize a wider spread than the spread chosen at the mid-
probability

(
πl+πh

2

)
. Note that subjective beliefs fail to rationalize spreads

that are wider than any chosen spread at every unambiguous probability
π ∈ [πl, πh]. The experiment targets evidence in favor of ambiguity aversion
that cannot be simultaneously rationalized by subjective expected utility.
Bid-ask pairs for an ambiguous set [πl, πh] that are more divergent than
bid-ask pairs chosen at any π ∈ [πl, πh]–i.e., at all unambiguous probability
values in the same set–are interpreted as evidence in favor of ambiguity
aversion.

Hypothesis 1 Ambiguous probabilities induce wider bid-ask spreads than
unambiguous probabilities:

E[a− b|π ∈ [πl, πh]] > E[a− b|π], ∀ π ∈ [πl, πh]. (2)

If subjects are ambiguity-averse, changes in their perception of ambigu-
ity will translate into variation in the spread. In a second step, differences
in quotes between the two treatments are used to assess how gradual in-
formation processing affects the perception of ambiguity.

The experiment is designed such that full Bayesian updaters would
quote the same bid-ask pairs for ambiguous prospects in the two treat-
ments, NL and L. In contrast, maximum likelihood updaters would per-
ceive substantially less ambiguity and choose smaller spreads in treatment
L. To this effect, the comparison across treatments focuses on rounds
with identical sets of marginal and FBU probabilities, i.e. rounds with
Π∗ ∈ [πl, πh] = [ρFBUl , ρFBUh ]. Identical spreads and quotes in the two
treatments indicate that, on average, subjects perceive the same support
of probabilities, which would provide evidence in favor of FBU:
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Under FBU, a risk-neutral but ambiguity-averse agent chooses:

i. Identical and strictly positive spreads:

0 < E[a− b|ρ ∈ [ρFBUl , ρFBUh ]] = E[a− b|π ∈ [πl, πh]]

ii. Identical quotes:

E[a |ρ ∈ [ρFBUl , ρFBUh ]] = E[a |π ∈ [πl, πh]]

E[b |ρ ∈ [ρFBUl , ρFBUh ]] = E[b |π ∈ [πl, πh]]

with [ρFBUl , ρFBUh ] = [πl, πh].

Conditional smooth preferences (CSP) make predictions in between. A
CSP agent considers the same support of posteriors than an FBU agent
and, thus, still holds non-degenerate second-order beliefs after the arrival
of information. A risk-neutral but ambiguity-averse CSP agent therefore
chooses a spread. Average quotes, on the other hand, reflect the expected
probability which is more extreme than under FBU. As belief updating
generates more asymmetric second-order beliefs, the expected probability
becomes more-extreme. These, on average, more-extreme beliefs should be
reflected in more-extreme quotes, i.e., quotes that deviate further from 50,
the midpoint of the scale.

Under CSP, a risk-neutral but ambiguity-averse agent chooses:

i. Smaller but strictly positive spreads:

0 < E[a− b|ρ ∈ [ρFBUl , ρFBUh ]] < E[a− b|π ∈ [πl, πh]]

ii. More-extreme quotes:

E[ |a− 50| |ρ ∈ [ρFBUl , ρFBUh ]] > E[ |a− 50| |π ∈ [πl, πh]]

E[ |b− 50| |ρ ∈ [ρFBUl , ρFBUh ]] > E[ |b− 50| |π ∈ [πl, πh]]

with [ρFBUl , ρFBUh ] = [πl, πh].
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Under MLU, beliefs react stronger to information content, which, in turn,
eliminates ambiguity. After high (low) signals, beliefs will be higher (lower)
than under FBU:

Under MLU, a risk-neutral but ambiguity-averse agent chooses:

i. Zero spreads:

0 = E[a− b|ρ ∈ [ρFBUl , ρFBUh ]] < E[a− b|π ∈ [πl, πh]]

ii. Extreme quotes:

E[|a− 50| |ρ ∈ [ρFBUl , ρFBUh ]] > E[|a− 50| |π ∈ [πl, πh]]

E[|b− 50| |ρ ∈ [ρFBUl , ρFBUh ]] > E[|b− 50| |π ∈ [πl, πh]]

with [ρFBUl , ρFBUh ] = [πl, πh].

Thus, comparing the average spread and quotes between treatments
NL and L for the same support of marginal and FBU probabilities allows
me to differentiate between FBU, CSP or MLU. Table 1 summarizes the
predictions in Treatment L for different ambiguity preferences and updating
rules.
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Table 1: Predicted behavior of risk-neutral agents
with different preferences and updating rules

Risk Ambiguity
Preferences EU SEU MEU (or REU) REU
Updating rule BU BU FBU MLU CSP
Spread 0 0 |a− b| = |ρh − ρl| > 0 0 0 < |a− b| < |ρh − ρl|
Quotes a = b = ρ a = b = ρ a 6= b a = b = ρ ∈ {ρl, ρh} a 6= b

(b = ρl 6= a = ρh under MEU) |a+b
2 − 50| > |ρl+ρh2 − 50|

Note: For the predictions under ambiguity, we consider the case of ambiguity aversion.19



3 Experimental design

3.1 Treatment No Learning (NL)

Treatment NL consists of 20 rounds. Subjects start every round with an
endowment of cash W0 and tender both a bid and an ask (b, a ∈ [VL, VH ],
b < a).5 At the beginning of each round, subjects receive information
about the uncertainty of the investment and learn whether or not π is
ambiguous. The uncertainty in the asset’s value is visualized by displaying
“urn A”, which contains 100 balls in a mixture of red and blue balls. To
determine the asset value, the computer draws a ball (henceforth “value
ball”) from urn A: the asset takes the value VL if the value ball is red and
the value VH if the value ball is blue.

The proportion of red and blue balls in urn A varies across rounds (see
Table 2 for the chosen parameters) and is shown to the subjects. That is,
subjects learn π for risky prospects by observing the exact number of red
and blue balls in urn A. When the distribution is ambiguous, the exact
proportion of red and blue balls is not disclosed; instead, subjects observe
a minimum number of red and a minimum number of blue balls. The
remaining balls in urn A are depicted as grey. Thus, subjects learn an
interval range for π (e.g., π ∈ [.15, .85]) but they do not know its exact value
(see Figure A1 in Appendix A for examples of urn A with unambiguous
and ambiguous distributions).

To implement payoffs in ambiguous rounds, the computer chooses with
equal probability a value in [πl, πh]. Subjects, however, do not receive any
information about how the true composition of urn A is determined when
π is ambiguous.

Subjects then quote bid and ask on a second, separate screen.

3.2 Treatment Learning (L)

Treatment L is almost identical to treatment NL, except that it contains
an interim second stage in which subjects are given an additional signal
about the asset value.

5The submission of two separate quotes allows subjects to reflect on a buy and a sell
separately, as presumed in models with kinked preferences.
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In the first stage, subjects receive information about the prior µ. Like
the subjects in treatment NL, they observe the composition of urn A, which
is ambiguous or unambiguous, depending on the round of the experiment.

In a second stage, they receive an additional signal. They observe the
color of another ball (henceforth “signal ball") that is drawn from a second
urn. The choice of the second urn sets the correlation between the signal
and the asset value: if the value ball is red–i.e., the asset has value VL–the
signal ball is drawn from “urn L”, which contains 75 pink and 25 green
balls. If the value ball is blue, the signal is drawn from “urn H”, which
contains 75 green and 25 pink balls. Hence, the signal is correct–i.e., a
pink (green) ball is drawn when the value ball is red (blue)–with a 75%
probability.

Subjects observe the color of the signal ball (pink or green) but they do
not know whether the signal ball is drawn from urn L or urn H (in other
words, they do not know whether the asset has value VL or VH). Figure A2
in Appendix A depicts an example of the screen at the second stage.

3.3 Experimental procedures

The computerized experiment was run in the laboratory of Technical Uni-
versity Berlin and WZB Berlin Social Science Center.6 In total, 67 and 66
students participated in treatments NL and L, respectively. Each treatment
was run with three sessions of approximately 22 subjects.

The decision game started once all participants had read the instruc-
tions and had responded correctly to a comprehension test. After all sub-
jects completed the decision game, control measures of general attitudes
towards risk, uncertainty and ambiguity were elicited (see Appendix Sec-
tion D).

The asset could take either the value VL = 0 or VH = 100. Subjects
started each round with a cash endowment W0 = 100.

The set of possible probability values was chosen to be parsimonious
in order to have enough observations for the comparison between treat-
ments. Each treatment consisted of 14 rounds with unambiguous proba-

6The experimental interface was programmed with the software z-tree (Fischbacher,
2007). Participants were recruited with the ORSEE database (Greiner, 2004).
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Table 2: Chosen values for the probability π and the
prior µ with corresponding Bayesian posterior ρ

No Learning Learning
ρ(s = ϑL) ρ(s = ϑH)

Risk π = .05 µ = .05 ρ = .02 ρ = .14
π = .15 µ = .15 ρ = .05 ρ = .35
π = .35 µ = .35 ρ = .15 ρ = .62
π = .50 µ = .50 ρ = .25 ρ = .75
π = .65 µ = .65 ρ = .38 ρ = .85
π = .85 µ = .85 ρ = .65 ρ = .95
π = .95 µ = .95 ρ = .86 ρ = .98

TR = 7× 2 = 14 TRI = 7× 2 = 14

Prior Prior Posterior (with FBU)

Ambiguity π ∈ [.05; .65] ρ(s = ϑL) ∈ [.05; .65]
π ∈ [.15; .85] µ ∈ [.15; .85]
π ∈ [.35; .95] ρ(s = ϑH) ∈ [.35; .95]

TA = 3× 2 = 6 TAI = 1× 6 = 6

Total TNL = 20 TL = 20
Note: Subjects in treatment L are informed about the prior µ and the signal but not
about the Bayesian posterior ρ. Posterior probabilities are rounded to two decimal places.
The parameter T denotes the number of rounds. Each parameter value occurs in two
rounds, except for the ambiguous prior in L: the 6 ambiguous rounds start with the same
set [.15, .85].

22



bilities and six rounds with ambiguous probabilities, or 20 rounds in to-
tal. The variation in the unambiguous probabilities π and µ was identi-
cal in both treatments NL and L. The ambiguous rounds, on the other
hand, differed between the two treatments: in L, the set of priors was
fixed to [.15; .85] (see Table 2). There, the variation in beliefs came from
the signal’s value that implied either a low range for the set of FBU
posteriors(ρ(s = ϑl) ∈ [.05; .65]) or a high range ρ(s = ϑh) ∈ [.35; .95]).
As described in Subsection 2.3, the two sets of probabilities, [.05; .65] and
[.35; .95], in NL were chosen to equal the set of posterior beliefs under FBU
in L. This enables me to compare bids and asks for the same dispersion in
probabilities, when information on the distribution was provided immedi-
ately versus sequentially.

Within each treatment, participants made their decisions in alternating
blocks of seven consecutive risky and three consecutive ambiguous rounds.
Within each block, probabilities were ordered in increasing or decreasing
order for less confusion (Vieider et al., 2015). In one out of the three
sessions (per treatment), the ordering of blocks was reversed. In addition,
subjects played four trial rounds with different parameter values. Two of
the trial rounds had ambiguous probabilities.

Decisions were incentivized with a random incentive system. To en-
courage subjects to consider each decision problem in isolation, the payoff-
relevant round was chosen at the beginning of the decision game (Baillon
et al., 2015). For this purpose, subjects threw a 20-sided die after the trial
rounds but before playing the 20 rounds. Subjects did not see the outcome
of the die roll until the end of the game. That is, they were aware that
the payoff-relevant round was fixed during the experiment but they learned
which round was chosen only after all of their decisions. The instructions
as well as the computer screen emphasized accordingly that hedging across
rounds makes no sense once the payoff-relevant round is determined.

Earnings consisted of a show-up fee (5 EUR), plus two thirds of earn-
ings in the randomly drawn round in the investment game plus one third of
earnings in a randomly chosen task for the elicitation of preferences. The
exchange rate was 0.13 EUR per experimental currency units (ECU). Min-
imum and maximum earnings were 5 EUR and 28.84 EUR, respectively.
Subjects earned, on average, 19.50 EUR for approximately 100 minutes.
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4 Results

4.1 Treatment NL

Decisions for risky prospects. Subjects made mostly risk-averse choices:
a majority of bid-ask pairs had a non-zero spread. Since the distribution
of spreads is highly right-skewed, the analyses focus mainly on quantiles.7

The median spread matches the risk of investing: it is hump-shaped in the
probability, with a maximum at a probability of 50% (see Figure 4a). The
spread is asymmetric around the probability, reflecting that increasing the
bid (the ask) becomes more (less) risky with an increasing probability (see
Figure 4b).89 Overall, subjects chose a median spread of 5 ECU.

Table 3: Median and mean spread for various ranges of ambiguous
and unambiguous probabilities.

π [5%− 65%] [15%− 85%] [35%− 95%] Total obs.

Median Mean Median

Risk 9 10 10 18.50(.825) 5
Amb. 20 28 20 29.23(1.464) 20

Diff. -11∗∗∗ -18∗∗∗ -10∗∗ -10.73∗∗∗ -15∗∗∗

N 804 804 804 1340
Note: Median test (and two-sample test in means): ∗: p-value<.1,∗∗: p-value<.05, ∗∗∗:
p-value<.01. Robust standard errors clustered at subject level (CRSE) in parentheses. The
variable Amb. represents the indicator variable for rounds with an ambiguous probability.

Decisions for ambiguous prospects. Ambiguity about the probability
significantly reduced subjects’ willingness to trade. The median bid is
shifted downwards, and the median ask increases, leading to significantly

7Most analyses yield even more significant results for mean values.
8Buying and selling are not equally risky as long as the low-value and high-value

states are not equally probable. When the expected value is high, bidding is more risky
than asking the expected value: a high bid entails the risk of paying a high price for a
low-value asset, whereas a high ask price limits the risk of selling a high-value asset. The
reverse holds when the expected value is low. However, the asymmetry in risk premia
observed in the data is too large to be rationalized by reasonable coefficients of risk
aversion.

9Subjects are generally more risk-averse in buying than in selling. This finding is
puzzling as endowment effects should not play a role in short-selling.
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Figure 4: Median spreads and quotes as a function of unambiguous priors.

wider spreads for ambiguous prospects (see Table C3 in Appendix C.1.2).
Median spreads for prospects with ambiguous probabilities are three times
as high as for unambiguous probabilities (see Table 3). Despite the asym-
metry in risk premia for long and short positions, the ambiguity premium is
almost symmetric. Subjects exhibited a median risk premium of 20% and
6.7% of the expected value in the bid and the ask, respectively. Ambiguity
adds a premium of 20 and 16.4 percentage points in the bid and the ask,
respectively (see Table C2 in Appendix C.1.1). In sum, Hypothesis 1 is
confirmed.

Result 1 Ambiguity in probabilities generates wider spreads.

As a direct consequence of the design, subjects traded and earned
less when the return distribution was ambiguous. Subjects traded risky
prospects in 82% of all rounds. Trades fell by 14.8% (12 percentage points)
when probabilities were ambiguous. The greatest reduction of 19.3% oc-
curred when the probability was between 15% and 85% (see Table 4).

The decrease in trading activity translated into significantly smaller
profits. Subjects earned, on average, 41.98% (p=.0015, two-sample t-test)
more in risky rounds than in ambiguous rounds (See Table C1 in Appendix
C.1.1).
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Table 4: Percentage of trades across different
ranges of probabilities

π [5%− 65%] [15%− 85%] [35%− 95%] Total obs.

Risk 80.44 79.55 79.55 81.77
(1.5) (1.6) (1.6) (1.3)

Amb. 71.89 64.17 73.88 69.65
(3.9) (4.2) (3.8) (2.3)

Diff. 9.55∗∗ 15.37∗∗∗ 5.67 12.12∗∗∗

(4.2) (4.4) (4.1) (2.6)
N 804 804 804 1340

Note: P-values of binomial test with CRSE: ∗: p-value<.1,∗∗: p-value<.05,
∗∗∗: p-value<.01.

4.2 Treatment L

4.2.1 Spreads

The general effects of ambiguity on the spread are robust to incoming in-
formation. In the aggregate, choices in treatment L were ambiguity-averse.
Subjects chose wider spreads for ambiguous than for risky distributions,
with increasing difference in the mean in the last ten rounds (see Table 5).

Table 5: Median and mean spread with ambiguous and unambiguous
priors in Treatment L.

Rounds 1-10 11-20 1-20 .

Med. Mean Med. Mean Med. Mean

Risk 8.5 20.29(1.24) 10 18.79(1.13) 10 19.54(.84)
Amb. 19 24.38(1.85) 20 28.29(2.10) 20 26.33(1.40)

Diff. -10.5∗∗∗ -4.09∗∗ -10∗∗ -9.5∗∗∗ -10∗∗∗ -6.79∗∗∗

Note: One-sided median test and two-sample test in means: ∗: p-value<.1,∗∗: p-
value<.05, ∗∗∗: p-value<.01. Standard errors in parentheses.

The comparison between the two treatments shows that subjects still
reacted to information. Starting with a set of priors µ ∈ [.15, .85], full
Bayesian inference reduces the interval of probabilities by ten percentage
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points (Π∗(s = ϑl) = [.05, .65] or Π∗(s = ϑh) = [.35, .95]), while MLU even
eliminates ambiguity. The diminished ambiguity is expressed in subjects’
quotes. The ambiguous rounds in treatment L show more trading activity
than the rounds with the same set of marginal probabilities π ∈ [.15, .85] in
NL: the average spread for ambiguous prospects is smaller by 29% (median
(mean) spread of 28 (35.10) in NL vs. 20 (26.33) in L, p=.01, median
test). Trading activity is higher by 22% (64% in NL vs. 79% in L, p=0.011
binomial test with CRSE). Mean profits are 34% higher ( on average 6.29
ECU more, p=0.088, two-sample test).

However, no difference in the aggregate distribution of spreads is ob-
servable after controlling for the range of marginal and FBU probabilities
(p-value=.92 in Kolmogorov-Smirnov test; see Figures 5a and 5b). Compar-
ing rounds in which marginal probabilities (π) and FBU posteriors (ρ) lie
in the same interval [.05; .65] discloses a small difference in the spread: par-
ticipants in NL chose a median spread of 20, whereas the median spread in
L equaled 15. This non-significant difference carries even less weight in the
aggregate since the two treatment groups chose identical median spreads
of 20 when both π and ρ(s = ϑh) ∈ [.35; .95].

Figure 5a depicts the distribution of chosen spreads in the ambiguous
rounds of treatment NL with π ∈ [.05, .65] or [.35; .95]. Figure 5b refers to
the distribution of spreads in the ambiguous rounds of treatment L with
ρ ∈ [.05, .65] or [.35; .95]. In both figures, the vertical solid and dashed
lines represent the median and mean spread, respectively. The distribu-
tions of spreads do not differ for the same range of marginal and posterior
probabilities (p-value=.92 in Kolmogorov-Smirnov test).
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Figure 5: Spreads for ambiguous prospects for the same theoretical dis-
persion in marginal (a) and Bayesian posterior (b) probabilities.

Apparently, subjects did not perceive substantially less ambiguity when
the same information was released gradually. Therefore, the data do not
lend support to MLU theory. Yet the data are not completely consistent
with FBU theory, either: subjects reacted differently to ambiguity in given
probabilities than to ambiguity in updated posteriors. Although spreads
were, in the aggregate, constant, chosen bids and asks were more extreme
after information. The next section analyses the level of quotes as an
additional indicator about updating behavior besides the spread.

4.2.2 Quotes

Learning generated more-extreme quotes. Participants in treatment NL
chose a median bid and ask of 17.5 and 50 when π ∈ [.05; .65]. Participants
in treatment L, however, chose a median bid and ask of 10 and 40 for an
FBU posterior ρ ∈ [.05; .65] (significant differences between updated and
non-updated quotes at the 5% level each). Analogously, the median bid
and ask is 40 and 70.5 in the rounds in which π ∈ [.35; .95] but 50 and
81 in the rounds with a set of FBU posteriors ρ ∈ [.35; .95] (significant
differences at the 1% level each).

The process of updating also introduced heterogeneity in chosen quotes.
Yet this heterogeneity did not seem to be driven by a lack of probabilistic
sophistication. Section C2 in the Appendix shows that Bayesian inference
cannot be rejected in risky rounds. Estimated decision weights reflect an
inverse S-shape weighting function. Taking into account the estimated
weighting function, updated quotes conformed, on average, with Bayesian
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inference (see Appendix Figure C1).
As subjects, in the aggregate, updated information correctly in risky

rounds, the heterogeneity in ambiguous rounds cannot be reduced to mis-
takes and noise. It might rather reflect different updating rules. To il-
lustrate the heterogeneity in quotes, the midpoints of bid and ask pairs
(henceforth mid-quotes) are depicted in Figures 6a-6d. The top two pan-
els, 6a and 6b, show the distribution of mid-quotes for the ambiguous prob-
abilities π ∈ [.05, .65] and π ∈ [.35; .95], respectively. Without incoming
information, mid-quotes are distributed symmetrically around the midpoint
of the set of probabilities. The distributions differ clearly in the bottom
two panels, 6c and 6d, that show mid-quotes for the same intervals of FBU
posteriors (i.e., ρ ∈ [.05, .65] and ρ ∈ [.35; .95]). Mid-quotes are clustered
at three mass points ({0−5; 20−25; 45−50}, {50−55; 70−75; 95−100}),
suggesting three main updating methods.

The cluster analysis in Appendix C.3 illustrates how decisions differed.
In sum, a substantial share of quotes (25.75%) matched highly ambiguity-
averse investment behavior, which favored non-participation. These sub-
jects centered their bids and asks around the mid-prior 50 and chose wide
spreads. Another substantial share (21.72%) were consistent with MLU:
quotes were extreme and spreads minimal. The majority of decisions
(42.17%) reflected updated but less extreme quotes. Yet these Bayesian
quotes did not reflect FBU posteriors. Under FBU, participants in treat-
ments NL and L should have considered the same support of probabilities
and, therefore, made similar decisions. Bid-ask pairs in treatment L should
have resembled the ones in NL and should have been similarly centered
around midpoints of the sets of probabilities, which, here, were {35, 65}.
However, bid-ask quotes based on incoming information reflected more ex-
treme beliefs than the ones in treatment NL. Controlling for the range in
marginal and FBU probabilities, 36.19% of bid-ask pairs in treatment NL
encompassed the value 50 versus 29.54% in treatment L (p-value=0.07 in
binomial test).

Smooth preferences account for the difference between average quotes
in treatments L and NL. Conditional smooth preferences generate more-
extreme beliefs than marginal smooth preferences if traders have mean-
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Figure 6: Mid-quotes for π or ρ ∈ [.05, .65] (left) and π or ρ ∈ [.35, .95]
(right). Treatment NL in top panels, L in bottom panels.
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preserving second-order beliefs. Consequently, gradual information release
induces more-extreme quotes compared to an environment in which infor-
mation is released all at once. Figures 7a and 7b display second-order
beliefs with and without learning for the same support of probabibilities.
The dashed line depicts a uniform density over probabilities, which can be
interpreted as subjects’ uniform second-order beliefs over marginal proba-
bilities (applicable to treatment NL). The solid lines represent second-order
beliefs over posteriors after Bayesian updating of uniform second-order be-
liefs over priors (applicable to treatment L). With smooth preferences, final
expectations are more extreme if information is learned progressively.

(a) π, ρ ∈ [.05, .65] (b) π, ρ ∈ [.35, .95]

Figure 7: Marginal and Bayesian second-order beliefs for a low (a) and a
high (b) support of probabilities.

With the principle of insufficient reasons, for instance, the mean prior
belief corresponds to E[µ] = .5 for µ ∈ [.15, .85]. Bids and asks would
be centered around E[V |s, µ = .5]–i.e., E[V |s = ϑl, µ = .5] = 25 after a
low signal, and E[V |s = ϑh, µ = .5] = 75 after a high signal.10 Average
chosen quotes can indeed be rationalized with updating the prior π = 0.5,
the midpoint in the set of priors (see Figure of NLSUR in Appendix). In
this context, Bayesian updating of second-order preferences illustrates why
quotes are more extreme in treatment L than in NL for the same support
of probabilities.

10Since the conditional probability for a correct signal is q = .75, the mass points
around 25 and 75 suggest base-rate neglect as a possible explanation. However, base-rate
neglect is unlikely to cause this pattern. Base-rate neglect should become apparent in
decisions regarding both ambiguous and unambiguous return distributions. Yet subjects
adjusted their quotes to the prior in risky rounds. Figure C4 in Appendix C.2.2 shows
how mid-quotes increase in the prior for the different signal values. Bids and asks are
not heavily centered around 25 or 75.
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Intuitively, processing information with smooth preferences entails a
revision of second-order beliefs, which, in turn, has several implications:
When incoming information is consistent with prior information, second-
order beliefs become asymmetric, generating both an updated support of
probabilities and more-extreme average first-order beliefs.

5 Conclusion

The evidence of ambiguity aversion found so far in Ellsberg-type exper-
iments extends to other frameworks. The experiment shows that, when
portfolio reallocation is limited, ambiguity impedes willingness to trade -
with and without sequential information processing. These results confirm
the intuition that investors appear to consider ambiguous assets more risky
(Sarin and Weber, 1993; Epstein and Wang, 1994).

A second main insight from the experiment is that ambiguity effects
cannot be disentangled from the information condition. The same degree
of ambiguity leads to different trading decisions, depending on how many
pieces of information have been available so far. Despite the same will-
ingness to trade, subjects chose more-extreme quotes when they received
information in pieces.

In addition, incoming information introduces more heterogeneity into
trading behavior. A substantial share of subjects were insensitive to addi-
tional information; another non-negligible share adopted extreme beliefs;
and the majority of subjects appeared to update second-order preferences
in a Bayesian way.

More questions remain to be clarified in future research. First, ambigu-
ity effects may differ in markets. There is a difference between individual
willingness to trade and its counterpart in markets–e.g., liquidity or market
depth. The risk of adverse selection may incite investors to avoid ambiguous
markets even more. Alternatively, trade may be driven by one’s knowledge
relative to other market participants’ (Zeckhauser, 2006, cf. competence
hypothesis in Heath and Tversky, 1991). To be willing to trade, one might
find it sufficient to not be at an informational disadvantage compared to
other traders. Furthermore, the interaction between investors might elimi-
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nate any perception of ambiguity, especially if aggressive traders dominate
the markets. Indeed the evidence on ambiguity effects in ambigous exper-
imental markets is mixed (Sarin and Weber, 1993; Bossaerts et al., 2010;
Kocher and Trautmann, 2013; Corgnet et al., 2013; Füllbrunn et al., 2014)
and the extent to which information aggregation abates ambiguity effects
is still not clear.

Second, the observed divergence in beliefs casts doubts on the hypoth-
esis that trading volume falls with ambiguity. Even if ambiguity weakens
individual willingness to trade, beliefs resulting from learning might be so
divergent that different trading parties agree on speculative trade. This
is consistent with Epstein & Schneider’s (2007) conjecture that increasing
confidence through learning fosters investment and stock market partici-
pation. This study draws attention to frequent information release as a
mechanism to alter subjects’ confidence in their final beliefs and avoid or
correct frictions in trades.
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For Online Publication (Appendices A-D)

A Screen layout

Figures A1a and A1b depict examples of the composition in urn A when
the prior is unambiguous and ambiguous, respectively. The grey balls in
the ambiguous urn can be either red or blue.

(a) Risky prospect (b) Ambiguous prospect

Figure A1: Examples for visualization of probability distribution with
urn A.

In treatment L, them subjects viewed a second decision screen before
they chose their quotes (see Figure A2). In the upper left corner, the
composition in urn A reminded the subjects of the prior distribution. If
the asset takes the value 0 (i.e., the value ball is red), a second ball is drawn
from “urn N.” In 75% of all drawings, the subject will then observe a pink
ball. The subject will see a green ball with 75% probability if the value
ball is blue and the signal ball is drawn from “urn H.” The right side of
the screen conveys the additional information by showing the color of the
signal ball.
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Figure A2: Example for an additional signal at the second stage.

B Mathematical appendix

B.1 Bid-ask spread generated by risk aversion

Risk aversion introduces a spread between the bid and the ask.

Let bRN = E(V ) be the optimal bid under risk neutrality. Assume that
risk-averse preferences are represented by a strictly concave utility function
U(·) with U ′(·) > 0 and U ′′(·) < 0 .

The optimal bid corresponds to the certainty equivalent that makes a
risk-averse agent indifferent between the initial position W0 and the invest-
ment in the long position. The optimal bid bRA must, therefore, satisfy:

EπU(W0 + V − b) = U(W0).

The short-selling ask satisfies accordingly :

EπU(W0 − V + a) = U(W0).

By Jensen’s inequality:

EU(bRN) = EπU(W0 + V − bRN) < U(Eπ(W0 + V − E(V )) = U(W0) = EU(bRA).

From U ′(·) > 0 and EU(bRN) < EU(bRA), it follows that bRA < bRN =
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E(V ). Analogously, aRA > aRN = E(V ).

B.2 Bid-ask spread with ambiguity-averse smooth pref-
erences

Following the model of smooth preferences in Klibanoff et al. (2005), a
strictly increasing and concave function φ(·) is used to represent ambiguity-
averse second-order preferences. The agent’s value function is assumed to
take the double expectational form:

∫ πh

πl

φ
(
EπU(·)

)
ψ(π)dπ, (3)

where ψ(π) represents the subjective probability over the set of priors
[πl; πh]. The operator Eπ computes the expected value with respect to a
specific Bernoulli distribution f(π) with success probability π.

The following analysis assumes that subjects have second-order beliefs
whose mean corresponds to the midpoint in the range of priors.11 I first
show that ambiguity-averse but mean-preserving second-order preferences
generate a bid-ask spread. The optimal bid for going long is the certainty
equivalent that satisfies:

∫ πh

πl

φ
(
EπU(W0 + V − b)

)
ψ(π)dπ = φ(U(W0)). (4)

Denote
∫ πh
πl

(·)ψ(π)dπ =: Eψ(·). By Jensen’s inequality:

Eψφ(EπU(W0 + V − b)) <φ(EψEπU(W0 + V − b)). (5)

Under mean-preserving second-order beliefs, the subjective probability
function ψ(π) satisfies

∫ πh
πl
πψ(π)dπ = Eψ(π) = π̄, where π̄ represents the

midpoint of priors. The RHS in Equation (5) then equals:

φ(EψEπU(W0 + V − b)) = φ(Eπ̄U(W0 + V − b)). (6)
11Henceforth, the notion “mean-preserving” refers to“midpoint-preserving” in this

context.
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Consider an agent who bids for a risky asset with Bernoulli distribution
f(π̄). The optimal bid makes the agent indifferent between buying the
asset and keeping the endowment. It satisfies :

φ(Eπ̄U(W0 + V − bR) = φ(U(W0)). (7)

From equations (4), (5) and (7), it follows that:

φ(Eπ̄U(W0 + V − bR) < φ(Eπ̄U(W0 + V − b)). (8)

Because φ(·) is strictly increasing, U(·) strictly concave, the optimal bid un-
der ambiguity aversion is smaller than the optimal bid under risk, bAA < bR.
Analogously, aAA > aR. Ambiguity-averse smooth preferences produce
wider spreads than the spread under risk. With mean-preserving second-
order beliefs, bid and ask quotes converge to the expected value under risk
with decreasing ambiguity and risk aversion.

B.3 Conditional smooth preference

Incoming information alters the optimization problem at two points. First,
expected utility is computed with posterior probabilities ρ(s, µ) instead of
given probabilities π. Second, the incoming information directly affects
second-order beliefs ψ(s, µ) by shifting more weight to more likely proba-
bility values (Epstein and Schneider, 2007; Klibanoff et al., 2009). With
standard Bayesian updating:

ψ(s, µ) = ψ(µ)f(s, µ)∫ µh
µl
ψ(µ̃)f(s, µ̃)dµ̃,

where

f(s, µ) =

qµ+ (1− q)(1− µ) if s = ϑh

(1− q)µ+ q(1− µ) if s = ϑl.

The function f(s, µ) is the probability of receiving signal s given a prior
Bernoulli distribution with success probability µ. In particular, because
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ψ(s, µ) 6= ψ(µ):

Eψ(s=ϑl,µ)φ
(
E{s=ϑl,µ}U(·)

)
< Eψ(µ)φ

(
E{s=ϑl,µ}U(·)

)
(9)

Eψ(s=ϑh,µ)φ
(
E{s=ϑh,µ}U(·)

)
> Eψ(µ)φ

(
E{s=ϑh,µ}U(·)

)
. (10)

Therefore, bCSP,{s=ϑl} < bSP{s=ϑl}: with conditional smooth preferences (CSP),
second-order beliefs over priors that are updated upon the signal (s =
ϑl) induce a bid bCSP that is lower than the optimal bid obtained with
the same second-order beliefs over marginal probabilities. Analogously,
bCSP,{s=ϑh} > bSP{s=ϑh}. Thus, conditional smooth preferences generate more-
extreme beliefs than marginal smooth preferences if traders have mean-
preserving second-order beliefs. Consequently, gradual information release
induces more-extreme quotes compared to an environment in which infor-
mation is released all at once.

In addition, it can be shown that under the assumption of mean-preserving
spreads, bCSP < bR. The risk-neutral agent quotes: bRN = aRN = E(V |s, µ̄),
where µ̄ = E[µ]. With decreasing ambiguity and risk aversion: bCSP −→
E(V |s, µ = E[µ]). Analogously, aCSP > aR and aCSP −→ E(V |s, µ =
E[µ]) with decreasing ambiguity and risk aversion.

C Results

C.1 Reactions to ambiguity

C.1.1 Descriptive statistics

Table C1 shows mean profits for risky and ambiguous prospects, across
different ranges of probabilities.
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Table C1: Mean profits across different ranges of
probabilities

Range of π [5%− 65%] [15%− 85%] [35%− 95%] Total obs.

Risk 26.82 23.36 23.9 27.97
(1.82) (1.88) (1.85) (1.52)

Amb. 24.92 18.57 15.63 19.70
(3.95) (3.89) (4.15) (2.31)

Diff. 1.90 4.79 8.27∗∗ 8.27∗∗∗

(4.35) (4.32) (4.54) (2.78)

N 840 840 840 1340

Note: ∗: p-value<.1,∗∗: p-value<.05, ∗∗∗: p-value<.01. The variable “Amb” rep-
resents the dummy variable for the ambiguous rounds.

Table C2 shows the median values of bid and ask quotes as a fraction of
the expected value. The premia in ambiguous rounds are computed with
respect to the midpoint of the probability interval.

Table C2: Median values of quotes as a fraction of
the expected value

b
E(π)

a
E(π)

Risk .8 1.0667
Amb. .6 1.2308
Diff. -0.20∗∗∗ -0.1641∗∗∗

Note: The variable “Amb.” rep-
resents the dummy variable for
the ambiguous rounds. ∗∗∗: p-
value in median test <.01.

C.1.2 Regression estimates

Table C3 presents the results of the median polynomial regression. The
estimates for risky prospects are plotted in the Figures 4a and 4b in
Section 4.1.
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Table C3: Median polynomial regression

Dep. var. Bid Ask Spread

Prior 0.3392∗∗∗ 1.1296∗∗∗ 0.5∗∗∗

(.104) (.104) (.089)
Prior2 0.0060∗∗∗ -0.0018∗∗ -0.005∗∗∗

(.001) (.001) (.001)
Amb. -5∗∗∗ 8∗∗∗ 10∗∗∗

(1.899) (2.398) (3.014)
cons 3.1548∗∗ 4.3981∗∗ -1.375

(1.284) (2.062) (.924)

N 1340 1340 1340
R2 .3717 .3146 .0443

Note: Testing of coeffcients with robust standard er-
rors in parentheses: ∗: p-value<.1, ∗∗: p-value<.05,
∗∗∗: p-value<.01. The variable “Amb.” represents the
indicator variable for the ambiguous rounds.

C.2 Probabilistic sophistication

Updating unambiguous priors. Subjects’ general probabilistic sophistica-
tion is analyzed with their decisions for risky prospects. First, the risky
rounds in NL are used to establish a pattern between decisions and objec-
tive probabilities. Subjects should react in the same way to probabilities,
regardless of probabilities being given or updated. Second, assuming that
this pattern is stable–even if information is released gradually– this pattern
serves as benchmark to discuss the validity of Bayesian posterior probabil-
ities.

The underlying regression model assesses the extent to which the bid
and the ask follow the asset’s expected value. Beliefs are estimated with
nonlinear least squares in a seemingly unrelated regression with robust
standard errors (NLS-SUR):

 bi = (1−RPb) · E[V |τ̃ ] + εi,b

ai = (1 +RPs) · E[V |τ̃ ] + εi,s,
(11)
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where E[V |τ̃ ] = VH · τ̃ .

It is, therefore, assumed that bids and asks both follow the subject’s
expectation about the fundamental value but potentially in a distorted
way. Because subjects in treatment NL were more risk-averse in buying
than in selling, the risk premium in selling RPs is allowed to differ from
the risk premium in buying RPb. The subject’s expectation is a function
of his belief τ̃ , which does not necessarily equal the objective probability.
The mapping between objective probabilities and beliefs is represented by
a weighted probability function proposed by Prelec (1998):

τ̃i = e(−β(− ln τ)α).

The subject’s belief τ̃ is a weighted function of the objective probability
τ . In treatment NL, τ = π, whereas in treatment L, the objective proba-
bility is assumed to be the Bayesian posterior τ = ρ.12 The coefficient α
regulates the curvature of the function. The parameter β determines the
inflection point of the curve.

Table C4: Coefficient estimates for probability
weighting function and risk premia

NL L

β 0.7971 (.0576) 0.7940 (.0424)
α 0.6861 (.0612) 0.7411 (.0722)

RPs 0.0110 (.0316) 0.0272 (.0326)
RPb 0.2583 (.0366) .2420 (.0280)
Note: Nonlinear least squares estimation with
CRSE. Estimates are not significantly different.

The probability weighting function is, in general, inverse s-shaped, re-
flecting a general over-weighting of small and under-weighting of high prob-
abilities. The functions do not differ between the two treatments. That is,
subjects reacted to unambiguous marginal probabilities in the same way as

12An alternative definition of Bayesian inference is that subjects apply Bayes’ rule to
the weighted priors. As I compare subjects’ reaction to objective probabilities, I use the
definition of Bayesian updating that is closest to objective probabilities.
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Figure C1: Estimated probability
weighting function for unambiguous
probabilities in NL & L.

to unambiguous Bayesian posteriors. Assuming a stable relation between
decisions and probabilities, Bayesian inference cannot be rejected.

Updating ambiguous priors. Analogous to the analysis of risky decisions,
I use the data in treatment NL to establish a pattern between decisions
and ambiguous priors. Assuming that the pattern does not change when
information is released gradually, this pattern is used to discuss the validity
of FBU and MLU posteriors.

The probability weighting function has single probability values as an
argument. Ambiguous distributions, however, are characterized by inter-
vals of probabilities. I approximate the estimates of the weighting function
by using the midpoint of the set of probabilities. In treatment NL, the
set corresponds to the ambiguous set of priors [πl, πh]. In treatment L, the
set equals the set of posteriors, which varies with the updating rule. The
midpoints of the set of FBU posteriors are less extreme than the midpoints
of the set of MLU posteriors, which, here, is a singleton.

The solid line in Figures C2a and C2b depicts the relation between
subjects’ estimated beliefs and ambiguous probabilities in NL. This inverse
s-shape relation serves as a benchmark for the relation between estimated
beliefs and the midpoint of ambiguous posterior probabilities in L. The
dashed line in Figure C2a represents the model fit with FBU posteriors.
Estimated beliefs are s-shaped in FBU posteriors, rather than inverse s-
shaped. The discrepancy between the benchmark (solid line) and the fit
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with FBU posteriors (dashed line) points out that decision weights with
FBU posteriors are too extreme. That is, chosen quotes were too extreme
to be explained by the range of beliefs under FBU.

The dashed line in Figure C2b depicts the model fit with MLU pos-
teriors. The weighting function is inverse s-shaped but also deviates from
the benchmark (solid line). Given an MLU probability, estimated beliefs
are not sufficiently extreme to match the benchmark. Decision weights are
too close to the belief of 50% to be explained by extreme MLU posteriors.
Appendix Section C.2.1 displays the estimates of the NLS-SUR with am-
biguous probabilities and the results of a Lagrange-Multiplier test, which
show a significant difference between the benchmark model and the model
fit under both FBU and MLU probabilities.
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(a) Assuming FBU in L.
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(b) Assuming MLU in L.

Figure C2: Estimated probability weighting functions in ambiguous
rounds of NL & L.

In a nutshell, quotes based on ambiguous posteriors are not extreme
enough to be explained by MLU beliefs but too extreme to be explained
by FBU beliefs.

Instead, Bayesian posteriors at the expected prior ρ(s, π = .5) fit the
relation between trading decisions and probabilities (see Figure C3): the
probability weighting functions with marginal and posterior probabilities
do not differ when posterior probabilities correspond to Bayesian updates
of the midpoint of ambiguous priors.
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Figure C3: Estimated probability weight-
ing functions in ambiguous rounds of NL &
L assuming BU of mid-prior in L.

C.2.1 Results of NLS-SUR

Table C5 shows the coefficient estimates of the NLS-SUR model. Because,
by design, there is less variation in the ambiguous probabilities, the esti-
mation is more efficient when assuming symmetric premia in the bid and
the ask. The model estimates assuming Bayesian update of recursive pref-
erences (CSP - conditional smooth preferences) do not differ from the esti-
mates in treatment NL (p-value of 1 for the ask equation and .2211 for the
bid equation in the Lagrange-Multiplier test).
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Table C5: Coefficient estimates for probability
weighting function and risk premia

NL L

mid-prior FBU∗∗∗ MLU∗∗∗ CSP

β 0.9646 1.1532 0.9206 0.9824
(.0370) (.0301) (.0440) (.0493)

α 0.6563 1.1754 0.2574 0.6658
(.0754) (.0686) (.0288) (.0744)

RP 0.2982 0.2491 0.2491 0.2491
(.0258) (.0301) (.0301) (.0301)

Note: Nonlinear least squares estimation with CRSE in a
seemingly unrelated regression. ∗∗∗: p-value<.01, refers to a
significance difference between the model estimates in treat-
ment NL and the ones with updated beliefs in Lagrange-
Multiplier tests.

C.2.2 Heterogeneity in updating

Figure C4 depicts mid-quotes for risky prospects and the mean regression
estimates as a function of unambiguous priors. The dashed and solid lines
correspond to mean estimates after subjects receive a high and a low signal,
respectively. The average mid-quote increases in the prior, showing no
evidence of base-rate neglect.
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Figure C4: Mid-quotes for unam-
biguous assets and their mean es-
timates for the two signals and the
group of Bayesian updaters ( clus-
ters 3 and 5 in Section E.3).
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C.3 Cluster analysis

To discern the different ranges of updated beliefs and their prevalence,
bid-ask pairs for ambiguous prospects are clustered. The cluster analysis
is performed in k-medians with eight clusters, yielding the eight different
ranges for updated beliefs listed in Table C6.13

Table C6: Median bids, asks and spreads and corre-
sponding statistics for eight clusters in ambiguous
rounds of treatment L

Cluster bid ask spread % trade % obs consistent with

1 1 2 1 100 12.12 MLU
2 10 16 5 100 5.30 AN & Bayesian
3 15 33.5 20 86.36 16.67 Bayesian
4 40 50 5 95.12 10.35 AN-LI/conservatism
5 60 80 20 82.5 20.20 Bayesian
6 98.5 99 1 100 9.60 MLU
7 20 70 50 53.62 17.42 AA
8 1 99 98 15.15 8.33 AA - non-participants
Note: Cluster analysis in k-medians.

In total, 21.72% of the ambiguous decisions belong to clusters 1 and 6
and are consistent with MLU. Quotes in these clusters were close to one
extremum and exhibited, on average, the smallest spread of one ECU. The
opposite behavior is described in clusters 7 and 8, which represent 25.75%
of the bid-ask pairs. These observations exhibited a substantial spread of
more than 30 ECU. In approximately one third of these decisions, the cho-
sen spread was wide enough to almost surely implement a no-trade outcome
(cluster 8). In cluster 4, 10.35% of the quotes disclosed a small spread with
bids and asks around 50%, the midpoint of the set of priors. These quotes

13The value of eight clusters finds its justification in the theory, allowing the iden-
tification of eight clusters in the upper triangular grid of bid-ask pairs: extreme be-
liefs upon both a low and a high signal (centered around the bid-ask points: (0,0);
(100,100)); ambiguity-neutral Bayesian beliefs upon both a low and a high signal (the
45 line (5,5) to (95,95) ); ambiguity-averse Bayesian beliefs upon both a low and a high
signal ((5,65); (35,95)); maximum ambiguity-aversion (0,100); and ambiguity-neutral
likelihood-insensitive beliefs (50,50). Robustness checks with more and fewer clusters
do not yield better comprehension of the data.
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match the behavior of an ambiguity-neutral but likelihood-insensitive (AN-
LI) investor who is rather unresponsive to incoming information. Under the
assumption that subjects have second-order beliefs, whose mean equals the
midpoint of the set of priors, over-emphasizing the mid-prior 50% concurs
with conservatism. Conservatism predicts an over-weighting of the prior
belief but no increase in the spread. The remainder of the decisions amount
to 42.17% of bid-ask pairs in clusters 2, 3 and 5. These quotes are con-
sistent with Bayesian updating. The decisions in cluster 2 result in small
spreads and, compared to decisions under risk, do not show any evidence
of ambiguity aversion. The majority of the bid-ask pairs, though, fall in
clusters 3 or 5, which disclose a median spread of 20 ECU. Figure C5 sum-
marizes the results of the cluster analysis. It depicts bid-ask pairs that are
consistent with MLU, ambiguity-averse Bayesian, ambiguity-averse non-
Bayesian and ambiguity-neutral beliefs in diamonds, squares, triangles and
dots or crosses, respectively.
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Figure C5: Clusters of bid-ask pairs in ambiguous rounds of treatment L

Table C7 lists the results of the same cluster analysis in treatment
NL. The analysis yields less extreme clusters of beliefs. Furthermore, the
observations are distributed more evenly across the eight clusters, yielding
the more symmetric distributions of quotes reflected in Figures 6a and 6b.
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Table C7: Median bids, asks and spreads and corre-
sponding statistics for 8 clusters in ambiguous rounds
of treatment NL

Cluster bid ask spread % trade % obs
1 5 10.5 1 100 8.96
2 20 25 2 95 7.46
3 30 37 1 97.06 12.69
4 20 50 35 69.70 12.31
5 49 60 12.5 82.61 17.46
6 70 80 5 90.70 16.04
7 35 90 52.5 34.38 11.94
8 4.5 85 72.5 19.44 13.43
Note: Cluster analysis in k-medians.
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D Elicitation of uncertainty preferences

I elicited control measures of preferences to analyze the extent to which
subjects’ behavior conformed with standard measures of risk and ambigu-
ity attitudes. For a cleaner comparison with the pricing task in the main
experiment, I used certainty equivalents as a main measure for risk and
ambiguity preferences. Feedback on payoff was provided only after com-
pletion of Part 2. All measures were elicited by displaying multiple price
lists with increasing numbers from top to bottom. This lack of randomiza-
tion might bias attitudes in a systematic direction, for instance if subjects
have an inclination to choose rows at the top or at the bottom. The results
in this section require therefore a cautious interpretation.

D.1 Risk attitudes

Figure D6: Example of computer interface in Part 2

Risk preferences were elicited with a multiple price list task akin to
Abdellaoui et al. (2011) and Gillen et al. (2015). In two replicate mea-
surements, subjects faced a list of pairwise choices between a sure payoff
and a lottery. Define the lottery (x, π; 0) as the chance to win prize x
with probability π, and win nothing else. The lotteries in the first and
second measurement corresponded to (100, 0.5; 0) and (150, 0.5; 0), respec-
tively. The lottery was illustrated on the left side of the computer interface,
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where subjects saw an urn with 10 (15) yellow and 10 (15) black balls in
the first (second) measurement. The lottery payed out if a black ball was
drawn. The right side of the interface showed a list of sure payoffs in [0;x],
with increments of 5 ECU per row. Subjects must then, for each row, make
a pairwise choice between the lottery and the sure payoff. Monotonicity
was enforced as subjects could only switch once from preferring the lottery
to preferring a sure payoff. Figure D6 depicts the computer interface for
the first measurement with lottery (100, 0.5; 0).

D.2 Uncertainty attitudes

Uncertainty attitudes were measured in two settings: in one task subjects
stated their certainty equivalent for a lottery with unknown probabilities;
the other task refers to a standard Two-Urn Ellsberg-Experiment in which
subjects chose between a risky and an ambiguous lottery.

D.2.1 Certainty equivalent

Subjects were presented with the same two multiple price list choices as in
the elicitation of risk attitudes but lotteries had unknown probabilities. An
urn with 20 (30) grey balls was used to illustrate the lottery with unknown
probabilities. Note, however, that the elicitation of certainty equivalents
for a bet on a black ball does not enable identifying ambiguity aversion.
A subject with a pessimistic belief would choose a low certainty equivalent
without being necessarily ambiguity averse. Ambiguity aversion requires
aversion towards uncertainty for both sides of the bet.

D.2.2 Two-Urn Ellsberg problem

Subjects made choices involving two lotteries with a high prize of either 100
or 150 ECU depending on the urn size. For each lottery, they faced two
gambles: A bet on a yellow ball that would pay 100 (150) ECU if a yellow
ball was drawn from an urn with 20 (30) balls and a bet on a black ball that
would pay 100 (150) ECU if a black ball was drawn from the same urn.
In a multiple price list, subjects specified their preferences between urn I
and urn II. The two urns had a total of 20 (30) balls, in a combination of
yellow and/ or black balls. While the composition of yellow and black balls
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were unknown in urn I, the composition in urn II varied along the list. For
a bet on a yellow ball, subjects indicated the minimum amount of yellow
balls in urn II, for which they were willing to switch from urn I to urn II.
Analogously for a bet on a black ball, they specified the minimum amount
of black balls in urn II. In the following, the term “matching probability”
refers to the share of balls at which subjects started to prefer the risky
lottery.

D.3 Results
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Figure D7: Relative risk and uncertainty premia

I define the certainty equivalent (CE) as the midpoint of the two pay-
offs between which subjects switched from preferring the lottery to the sure
payoff. Figures (D7a) and (D7b) depict the distribution of the relative risk
and relative uncertainty premia (RRP = RUP = E(x)−CE

E(x) ). The uncer-
tainty premium is measured relative to a success probability of 50%. On
average, 57.9% and 65.4% of all subjects chose a positive risk and uncer-
tainty premium, respectively. A share of 26.3% had neither a positive risk
nor uncertainty premium, 15.8% displayed a positive uncertainty premium
but no risk premium.

Let γw, γb be the matching probabilities for bets on yellow and bets on
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black balls. The degree of ambiguity aversion is measured by δ = (γw+γb).

δ


> 1 ambiguity seeking

= 1 ambiguity neutrality

< 1 ambiguity aversion

.
The elicited ambiguity attitudes are not consistent with the ambiguity

aversion reflected in chosen spreads and the, on average, positive uncer-
tainty premia. Only 18.8% of subjects were ambiguity averse but a sur-
prisingly large fraction of 72.93% subjects were ambiguity seeking. This
casts some doubts on the elicitation procedure and the measures’ robust-
ness. Ambiguity attitudes were elicited last and it is not clear whether this
result is due to fatigue, experience, some misunderstanding or framing in
the interface (which was not randomized).

In general, chosen spreads were consistent with the elicited measures of
risk and uncertainty premia but not with the elicited ambiguity attitudes.
Subjects who displayed a positive risk and uncertainty premium chose sig-
nificantly wider spreads. However, the elicited ambiguity attitudes do not
correlate with chosen spreads (correlation coefficient of -0.01).
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Table D8: Average spreads for different categories
of elicited attitudes

mean spread med. spread
RRP < 0 15.43 4

(0.80)
> 0 21.62∗∗∗ 10

(0.82)
RUP < 0 21.58 13

(1.49)
> 0 31.08∗∗∗ 20

(1.31)
δ < 1 25.16 20

(2.06)
= 1 25.03 20

(3.20)
> 1 28.79 20

(1.22)
Note: ∗∗∗ denote significant differences in spreads
between subjects with positive and nonpositive pre-
mia, with a p-value < 0.01.
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