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Abstract

Accounting for sample selection is a challenge not only for empirical re-

searchers but also for the agents populating our models. Yet most models

abstract from these issues and assume that agents successfully tackle selection

problems. We design an experiment where anyone who understands sample

selection can easily account for it. Agents make choices under uncertainty and

their choices reveal valuable information that is biased due to the presence

of unobservables. We find that essentially no subject optimally accounts for

endogenous selection. On the other hand, behavior is far from random but ac-

tually quite amenable to analysis: Subjects follow simple heuristics that result

in a partial accounting of selection and mitigate mistakes.
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1 Introduction

endogenous selection. Accounting for sample selection is a major challenge

for empirical researchers. Economic agents must also deal with selection, with the

difference that they usually have more control over the process because data is endoge-

nously generated by their own actions. Yet, a bit surprisingly, most models abstract

from this difficulty and assume that agents successfully tackle selection issues.

Our main contribution is to examine how people behave in the presence of en-

dogenous sample selection. The following examples illustrate this phenomenon.1

1. Bidding for procurement contracts. Every month, a firm bids on several pro-

curement contracts. The firm uses data on previously finished jobs to estimate its

cost for a new job, but, naturally, the firm does not observe the cost of projects it

was not awarded. If other firms have private information about a common value

component in cost, then the average cost of awarded projects will be higher than the

average cost of all projects. The reason is that a firm only observes costs of projects

in which other firms bid above its own bid. Similarly, the more aggressively the firm

bids, then the lower the average cost of projects that it is awarded.

2. Demand estimation. A firm wants to estimate its own-price elasticity of de-

mand. Each period, the firm chooses a price and observes its sales. But the firm does

not observe the prices of competing firms. Prices, however, are correlated, because

industry costs are correlated. Thus, the firm’s observed data will make demand ap-

pear less elastic than it actually is, when in fact the price increase of the firm is being

mitigated by the (unobserved) price increases of other firms.

3. Mental states and well-being. A person is pessimistic about her life prospects, so

she becomes disinterested and prefers to avoid exercising, studying, and other costly

investments. As a result, she continues to obtain poor outcomes, which reinforces her

pessimism. She does not realize, however, that if she were optimistic, she would feel

more energetic and find it less costly to invest.

4. Investment in risky projects. A Hollywood studio can invest in a sequel or

take a chance with a new project. The studio can easily forecast the financial return

of the sequel, but assessing a new project is more involved. The standard industry

1Example 1 is studied by Esponda (2008); Examples 2 and 4 by Esponda and Pouzo (2012, 2015),
and Example 3 by Kőszegi (2010). Esponda and Pouzo (2015) show that the endogenous selection
problem arises in general environments where the agent learns with a misspecified model of the
world.
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practice is to hire readers who, based on their experience, independently evaluate the

screenplay and make a recommendation. Readers’ experience is based on projects

that were effectively developed, that is, they do not know what would have happened

with movies that were never produced. If projects that were produced are on average

better than those that were not, but readers are unaware of the selection effect, they

will recommend the new project more often than optimal.

In these examples, an agent wants to learn something (a cost estimate, the elas-

ticity of demand, her life prospects, the prospects of risky projects) in order to make

decisions. People often do not know these primitives, and must learn them from

experience. But data is often limited because people do not observe counterfactuals

(the cost of a project that is not awarded, the sales from a price that was not chosen,

the benefits of changing attitudes, the returns from a risky project that was not im-

plemented). Moreover, observed data often comes from a selected sample due to the

presence of unobservables (such as the costs, information, or choices of other agents).

Finally, the agent’s own decision affects the sample that is actually observed.

Economic models often disregard these issues and assume that agents choose op-

timal actions. The main objective of this paper is to understand how subjects make

decisions in the presence of endogenous sample selection.

the experiment. One challenge in the experimental design is that it is difficult

to distinguish a naive subject from a subject who understands selection but is unable

to perfectly account for it (even professional researchers struggle here). We tackle this

issue by designing a lab experiment where anyone who understands sample selection

can easily account for it.

Our subjects face a toy version of the ‘investment in risky projects’ example. For

each of 100 rounds, a subject chooses between a risky and a safe project. The project

that is implemented in each round depends on the subject’s recommendation and

a random process (which represents the behavior of other recommenders). In the

“No Selection” treatment, the random process is uninformative, and so there is no

selection effect; i.e., one can correctly assess the chances that the risky project is good

by simply looking at the percentage of rounds in which it was observed to be good.

In the “Selection” treatment, the random process is correlated with the prospects of

the risky project and, therefore, there is a selection effect; i.e., the risky project is

more likely to be implemented if it is good, and so evaluating its effectiveness based
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on its observed performance would lead to an upward bias in beliefs.

relationship to previous experiments. The specific unobservable driving

sample selection in our experiment is other players’ private information (represented

by the random process described above). A large experimental and theoretical liter-

ature focuses on people’s failure to make inferences from others’ private information.

Experiments find that a majority of the subjects fail to correctly make such infer-

ences. Kagel and Levin (2002) survey theirs and others’ substantial early work, and

Charness and Levin (2009), Ivanov et al. (2010), and Esponda and Vespa (2014) pro-

vide more recent contributions. On the theory side, the initial contributions of Kagel

and Levin (1986) and Holt and Sherman (1994) in an auction context were gener-

alized by Eyster and Rabin (2005), Jehiel (2005), and Jehiel and Koessler’s (2008).

Esponda (2008) formalizes (the failure to account for) endogenous selection that is

driven by other players’ private information. These mistakes are also studied under

non-equilibrium concepts (e.g., Crawford and Iriberri (2007)).

Our experiment differs from previous experiments in that subjects do not know

the primitives and do not observe counterfactual outcomes. Without either of these

features, there would be no endogenous selection problem to study. As illustrated

by the introductory examples, the presence of private information is one of many

possible underlying causes of endogenous selection. Thus, the problem that we study

is of independent interest and has consequences for a broader range of settings.

Moreover, it is unclear how to extrapolate previous experimental findings due

to the different nature of our setting. First, the right solution calls for different

approaches. In previous experiments, subjects should compute an expectation con-

ditional on some event, and this computation requires knowledge of the prior and

others’ strategies. Of course, if one views our experiment in a similar manner, then it

seems harder because, in addition to computing a conditional expectation, subjects

must also learn the prior and others’ strategies. But, as we show, there is a simpler

way to approach our experiment: Subjects only need to keep track of the proportion

of successful projects that were implemented due to their pivotal recommendation.

Another reason why previous results are, at best, suggestive is that providing

primitives might induce subjects to make mistakes. For example, in a previous paper

(Esponda and Vespa, 2014), we follow the standard approach of telling subjects the

chance that a project is successful. Telling a subject that this chance is, say, 75%,

likely biases the subject to choose that project, even though a closer examination of
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other players’ strategies might reveal that, conditional on being pivotal, the chance

of success is negligible. By not providing primitives, we eliminate an important

mechanism underlying previous results. So it is an open question how people behave

in our new environment. Of course, this comment does not detract from previous work

for two reasons. First, the literature convincingly makes the important point that

most people fail to compute conditional expectations in environments with known

primitives. Second, there are many environments where it is natural to know the

primitives. In contrast, our focus is on settings in which a priori information is not

available and people need to form beliefs from endogenous data.

findings and implications. We focus on long-run, steady-state behavior for

two reasons. First, we want to see if mistakes persist in the long run, after extensive

experience. Second, our approach is consistent with the common focus in economics

on equilibrium behavior. One important benefit of focusing on equilibrium is that

many possible learning dynamics can lead to equilibrium, too many to be able to

identify with just two treatments, but there are only a few reasonable candidates for

(“rational” or “boundedly rational”) steady-state behavior.

The main finding is that the direction of the treatment effect is consistent with

naive subjects who do not understand endogenous selection. In both treatments, sub-

jects end up responding to the observed percentage of successful risky projects. In the

No Selection treatment, this is an optimal response. In the Selection treatment, this

is a suboptimal response that does not take into account the bias in the sample and,

therefore, subjects select the risky project too often. At the end of the experiment,

we elicit subjects’ beliefs and corroborate these predictions: Reported beliefs mostly

fail to account for selection and are consistent with naive (biased) beliefs.

We then examine the extent to which the naive theory can quantitatively ratio-

nalize the data. While naiveté predicts behavior in the No Selection treatment fairly

well, it tends to over-predict risky behavior in the Selection treatment. Controlling

for risk aversion, we find that subjects overestimate the benefits of playing the risky

alternative, but not by the full amount predicted by naiveté. This finding raises the

puzzle of how subjects can be so clearly naive but still manage to partially account for

selection.2 We discover, however, that it is rather natural for subjects to be partially

2If subjects placed even a small prior probability on the event that the random process is infor-
mative, then one might expect them to eventually learn that this correlation exists and correctly
account for it (particularly in our experiment). Thus, it would seem that, in steady-state, subjects
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naive in our experiment: Subjects are more likely to change their behavior (and in

the expected direction) in a given round if they were pivotal in the previous round.

Thus, subjects partially account for selection by placing more weight on feedback

from pivotal rounds.

Motivated by this finding, we propose a new model of partial naiveté to quantify

the extent to which subjects place more weight on feedback from pivotal rounds. We

estimate the model and find that the median subject places about three times more

weight on pivotal vs. non-pivotal rounds. This weighting, however, has a small effect

on behavior, since subjects are pivotal in only a third of the rounds. This explains

why behavior is still much closer to the naive than to the sophisticated prediction.

Eyster and Rabin (2005) develop a notion of partial naiveté, partially cursed

equilibrium, which includes fully cursed and Nash equilibria as special cases. A

particular value of their parameter of partial naiveté fits data from several experiments

(with known primitives) better than Nash equilibrium. Our notion of partial naiveté is

motivated by differential attention to limited feedback. While their model is defined

for any Bayesian game, our model illustrates the possibility of having a learning

interpretation of partial naiveté in a particular context.

There are three main implications from our results. The first is that subjects have

a harder time with selection problems than documented by previous literature. The

result is a bit striking, particularly because there is a very simple way to account for

selection in our experiment that does not involve learning the primitives or computing

difficult conditional expectations. Our finding that essentially no one understands

selection can be contrasted with previous experiments in which subjects know the

primitives and a non-negligible fraction—even nearing 50% in some treatments of

Charness and Levin (2009) and Esponda and Vespa (2014)—become sophisticated.

Second, there are reasons not to be too pessimistic about human behavior. Al-

though people do not understand selection, they follow certain heuristics (i.e., higher

weight on pivotal observations) that help mitigate their naiveté. In addition, the

experiment shows that behavior, far from being random, can be fairly accurately

rationalized by sensible heuristics. The experiment also raises new questions that

should ultimately help us build better models. Future work could seek to understand

why people respond more to pivotal events, despite not understanding selection. More

broadly, what types of events do people respond most to in general settings?

should be either completely naive or fully sophisticated in this experiment.
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Finally, the experiment highlights that there is much to learn from not giving

primitives to subjects. While not giving primitives was common in early experimen-

tal work, it is currently under-explored.3 It need not be so, particularly since an

important objective of experiments is to test equilibrium behavior. As highlighted by

the learning-in-games literature, equilibrium can be viewed as the result of a learning

process, and it imposes steady-state restrictions on what people have learned about

both the the strategies of “nature” and other players, without the presumption that

people somehow already knew one of these two objects to start with.4

Fudenberg and Peysakhovich (2014) highlight the importance of not giving primi-

tives in an adverse selection experiment. They find that learning models that account

for recency bias provide a better fit than steady-state solution concepts such as Nash,

cursed, or behavioral equilibrium. In particular, subjects respond more to extreme

outcomes in the previous round compared to much earlier rounds. Their results are

an important reminder that steady-state solution concepts are not always appropriate

to explain behavior.

roadmap. We describe the experiment and theoretical predictions in Section 2,

show the results in Section 3, and propose and estimate a model of partial naiveté

in Section 4. We conclude in Section 5 and relegate the instructions and robustness

checks to the Online Appendix.

2 The experiment

2.1 Experimental design

Each of our subjects participate in a single-agent decision problem. We provide a

summary of the instructions for each of the three parts of the experiment. Detailed

instructions (with the exact wording) are provided in Appendix B.

3In early experiments on competitive equilibrium (e.g., Smith, 1962), subjects traded without any
information about the distribution of sellers’ costs or buyers’ values, precisely because the objective
was to understand how decentralized markets aggregate this information. With the exception of the
“penny jar” auctions that Bazerman and Samuelson (1983) conducted among students (although,
unlike our experiment, without the chance to learn), the experimental auctions literature deviated
from this premise and provided subjects with the distribution of valuations early on (e.g., Cox et
al., 1982).

4See, for example, Fudenberg and Levine (1998), Dekel et al. (2004), and Esponda (2013), who
also points out that uncertainty about fundamentals and strategies are treated in the same manner
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project A is:
GOOD BAD

Majority’s A 5 1
choice: B x x

Figure 1: Payoffs for the experiment. The project that is implemented is determined by the choice of

the subject and two other agents played by the computer. The payoff x from implementing B varies each round from

1.25 to 4.75, and the subject observes the value of x before making a choice.

Part I (Rounds 1-100). Summary of instructions. In each of 100 rounds:

1. You will help your company decide between investing in a new project from industry

A or a new project from industry B. The chance that a project from industry A

is good is fixed between 0 and 100 percent and will not change throughout the

experiment.

2. Your company has programmed two computers, Computer 1 and Computer 2, to

assess whether project A is good or bad. If a computer assesses project A to be

good, then it recommends A; otherwise, it recommends B. The computers make two

types of mistakes: recommend A when A is bad and recommend B when A is good.

Computer 1 and Computer 2 make the same rates of mistakes. The chance that

the computers make the first type of mistake is fixed between 0 and 100 percent

and will not change throughout the experiment. The chance that the computers

make the second type of mistake is fixed between 0 and 100 percent and will not

change throughout the experiment.

3. Next, the interface draws a value of x (all values from 1.25 to 4.75, with increments

in quarter points, are equally likely) that represents the payoff if the company in-

vests in the project from industry B. You will observe the value of x but not the

recommendations of the computers. You will then submit a recommendation for

project A or B.

4. The company will invest in the project recommended by the majority, and the payoffs

for the round are given by the table in Figure 1.

Feedback: After each round, a subject sees the entire past history of rounds consisting

of: the recommendations of the computers, her own recommendation, the recommen-

dation of the majority, whether project A turned out to be good or not (provided it

by epistemic game theorists.
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Figure 2: Screen shot for round 26. In rounds 1-25, the subject must submit a recommendation for a

given value of x. In rounds 26-100, the subject must first submit a threshold recommendation that indicates a choice

for each value of x. She is then prompted to submit a choice for a particular value of x, as in rounds 1-25.

was chosen by the majority) and her payoff. Crucially, a subject does not observe

whether or not A would have turned out to be good if project A is not implemented.

In the above design, we only observe a subject’s decision for a particular value

of x, but, ideally, we would like to know the entire strategy; i.e., a decision in each

round for each possible value of x. To elicit this additional information, we introduce

a novelty to our design starting in round 26. The problem in rounds 26-100 is exactly

identical as the problem faced in the previous 25 rounds, but we now ask subjects to

make one additional decision. At the beginning of the round, before the value of x

is drawn, each subject must submit a threshold strategy indicating what she would

recommend for each value of x. Subjects must choose a number from 1 to 5 by clicking

on a slider on the screen. If they click on x∗, this means that they would recommend

B for x > x∗ and A for x < x∗. After they submit their threshold strategy, the round

continues as before: a value of x is drawn and they must submit a recommendation

for A or B. If the recommendation submitted is not consistent with their previously

selected threshold strategy, we alert them, ask them to make a consistent choice,

and remind them that they can change their threshold strategy in the next round.
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This procedure is intended to clarify the meaning of a strategy to the subjects. We

introduce the change in round 26 to make sure that subjects are familiar with the

problem before having to report a strategy. Figure 2 provides a screen shot of round

26.5

Part II (Belief elicitation). After round 100, we ask the subject to write an

incentivized report for the company explaining how they reached their decision by

round 100.6 After the report is written, we ask the subject three questions that are

intended to elicit their beliefs. The subject must answer one question before moving

on to read the next question. For each question, we pay $2 if the response is within

5 percentage points of the correct value.

Question 1. What is the chance that a project from industry A is good?

Question 2. What is the mistake rate of the computers when A is good? What is the

mistake rate when A is bad?

Question 3. What is the chance that a project from industry A is good conditional on

your recommendation being pivotal?

Parts III (Risk aversion). We measure risk aversion in the following way: In

the last part, the subject faces the same problem as in rounds 1-100, but with two

exceptions: there are no computers (so her decision alone determines the choice of

project), and the chance that project A is good is known. The subject must make a

threshold choice in each of five cases where the probability that A is good is known

to be .1, .3, .5, .7, and .9.7

5This design yields more (and less noisy) information in each round, compared to estimating a
threshold strategy from the data (pooling data from different rounds is less appealing in our setting
because subjects are likely to be learning and changing their thresholds over time). Of course,
without this restriction, some subjects might make a mistake and not follow threshold strategies.
But this mistake is not the main focus of this paper and, more generally, implications of the strategy
method have been studied elsewhere (e.g., Brandts and Charness, 2011).

6This part was anticipated in the instructions of Part I in order to encourage subjects to pay
attention to the data. Subjects were also provided with paper and pencil in Part I to take notes
about the observed data.

7At the end of the experiment, we run the experiment conducted by Holt and Laury (2002) to
obtain an alternative measure of risk aversion in the population; discussed in footnote 28, the two
measures are consistent with each other.

9



2.2 Two treatments

The primitives of the environment are given by (p,mG,mB), where p is the probability

that project A is good, mG is the mistake rate when A is good, and mB is the mistake

rate when A is bad. We consider two treatments. In both treatments, the probability

that a project from industry A is good is p = 1/4, and the (unconditional) probability

that a computer recommends A is 1/2. Treatments differ by the rates of mistakes of

the computers.8

No Selection treatment. Each computer recommends A and B with equal

probability, irrespective of whether A is good or bad, i.e., mG = mB = 1/2. The

computers’ recommendations in this treatment are uninformative of whether A is

good or bad.

Selection treatment. Each computer correctly recommends A if A is good.

Each computer mistakenly recommends A with probability 1/3 if A is bad, i.e., mG =

0, mB = 1/3. The computers’ recommendations in this treatment are informative.

As explained in the next section, when computers’ recommendations are informa-

tive (Selection treatment) the subject must make inferences from a biased sample.

2.3 Subjects

We ran a between subjects design at NYU’s Center for Experimental Social Science

(CESS). We conducted three sessions per treatment (68 subjects with No Selection

and 66 subjects with Selection). Part I lasted approximately 60 minutes and parts

II-III lasted about 25 minutes. Average payoffs were approximately $18.

2.4 Theoretical steady-state predictions

We begin with an informal discussion of the theoretical predictions and then char-

acterize the solutions for each treatment. Table 1 shows an example of feedback

from playing the first 12 rounds of the Selection treatment. There are two natural

steady-state predictions in our environment. The first prediction is that a subject

will naively estimate the chance that project A is good by the proportion of times

8An additional, atypical benefit of not providing the subjects with the primitives is that the
instructions for both treatments are exactly the same.
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Round Comp1\Comp2 You Majority Project A is... Payoff

1 A\A B A Good 5.00
2 B\B B B - 3.75
3 A\B B B - 1.25
4 A\B A A Bad 1.00
5 A\B A A Bad 1.00
6 A\A A A Good 5.00
7 B\B A B - 3.25
8 A\A A A Bad 1.00
9 A\B A A Bad 1.00
10 A\A B A Good 5.00
11 B\B A B - 1.75
12 A\A B A Good 5.00

Table 1: Example of feedback faced by a subject after 12 rounds in the Selection
treatment. A naive approach is to estimate the probability of good by looking at the relative proportion of good

vs. bad observed outcomes. A sophisticated approach is to look only at rounds in which a subject’s decision was

pivotal. In the Selection treatment, project A is always bad conditional on being pivotal.

that it has been observed to be good in the past. Thus, in the example provided in

Table 1, a naive subject will estimate the chance that A is good to be 1/2 and then

behave as in a decision problem where she has to choose between a risky option that

delivers a payoff of 5 or 1 with equal probability and a safe option that delivers x for

certain.9

The problem with this naive approach is that it does not account for the fact that

the sample from which the subject makes inferences will be biased if the recommen-

dations of the computers happen to be correlated with the state of the world. To see

this point, note that a subject only observes whether A is good or not when a major-

ity chooses to recommend A. But, if the computers happen to have some expertise

in determining whether A is good or not (as in the Selection treatment), then the

subject will observe whether A is good or bad in those instances in which A is more

likely to be good. In particular, the subject will overestimate the likelihood that A

9Following Esponda and Pouzo (2015), this form of naiveté arises from a model of misspecified
learning in which subjects believe that the behavior of the computers is independent of the state
of the world. This particular misspecification underlies the solution concepts of Eyster and Rabin
(2005), Jehiel and Koessler (2008), and Esponda (2008). Our characterization of naive behavior
follows Esponda’s (2008) behavioral equilibrium because that solution concept accounts explicitly
for the lack of counterfactual information. See Kőszegi (2010) and Spiegler (2015) for related solution
concepts.
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is good and choose a strategy that is more risky than optimal.

The second natural steady-state prediction is that a subject is sophisticated, un-

derstands the sample may be biased, learns to account for this bias, and eventually

makes optimal decisions. There are two natural ways to account for sample selection

bias in our context. One way to account for the bias is for the subject to use data

about the realized payoff of A only from the subsample of rounds in which her rec-

ommendation was pivotal; these are rounds 4, 5, and 9 in Table 1.10 In all of such

rounds, project A is observed to be bad. A subject following this rule will be more

pessimistic about the prospects of recommending A compared to a naive subject. A

second way to reach an optimal decision is simply to do so by trial and error. Subjects

have 100 rounds to experiment with different strategy choices and settle for the one

that they think maximizes their payoffs.

2.4.1 Steady-state behavior in No Selection treatment

In the No Selection treatment, the strategies of the computers are independent of the

state of the world (good or bad). Thus, there is no selection in the data and both

naive and sophisticated inferences lead to the correct belief that the probability of

A being good is 1/4. Thus, the naive and sophisticated predictions coincide for this

treatment.

Suppose, for example, that a subject is risk neutral. Then the steady-state belief

about the expected benefit from recommending A (whether or not conditional on

being pivotal) is (1/4)× 5 + (3/4)× 1 = 2. Thus, the steady-state threshold strategy

is x∗ = 2: for x > 2, a risk-neutral subject prefers to recommend the safe option B,

and for x < 2 a risk-neutral subject prefers to recommend the risky option A.

In practice, it is important to account for the fact that subjects in the experiment

might have different levels of risk aversion. Suppose, for concreteness, that a subject

has a CRRA utility function ur(c) = c1−r/1 − r with coefficient of risk aversion r,

where the subject is risk neutral if r = 0, risk averse if r > 0 and risk loving if

r < 0.11 Then the optimal (naive and sophisticated) threshold x∗ for a subject with

10The importance of pivotality in these types of environments is highlighted by Austen-Smith
and Banks (1996) and Feddersen and Pesendorfer (1997). Esponda and Pouzo (2012) show that
steady-state behavior corresponds to Nash equilibrium under sophisticated learning and behavioral
equilibrium under naive learning.

11For r = 1, we let u(c) = ln c.
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Figure 3: Theoretical prediction for Selection and No Selection treatments. For the

benchmark case of the No Selection treatment, naive and sophisticated thresholds coincide. Under Selection, naive

and sophisticated thresholds go in opposite direction: higher than the benchmark in the naive case and lower than

the benchmark (and equal to 1) in the sophisticated case.

risk aversion r is given by the solution to the following equation,

1

4
× ur(5) +

3

4
× ur(1) = ur(x

∗).

Figure 3 plots the (naive and sophisticated) threshold x∗N(r) = x∗S(r) as a function

of the coefficient of relative risk aversion, r. As expected, the threshold decreases as

risk aversion increases.12

2.4.2 Steady-state behavior in Selection treatment

In the Selection treatment, the strategies of the computers are correlated with the

state of the world (good or bad), and naive and sophisticated behavior differ. Consider

first the sophisticated case. Because both computers correctly recommend A if it is

good, then, if a subject is pivotal, A must be bad. Thus, it is optimal to always

recommend B, x∗NE = 1, irrespective of the risk aversion coefficient. In terms of the

12For simplicity, the theory discussion assumes that both x (uniformly distributed) and the thresh-
old can take any value in the interval [1, 5]. Of course, we account for the discreteness of the signal
and action space when discussing the results of the experiment.
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sophisticated rule described above, it will be the case that every time that the subject

is pivotal and recommends A, she will observe that A turned out to be bad. Thus,

with enough experience, a sophisticated subject should stop recommending A and

converge to x∗NE = 1.

Next, consider the naive steady-state prediction. The steady-state belief that A is

good is given by the probability that A is observed to be good conditional on the event

that the subject obtains some information about A. The latter event is equivalent to

the event that the majority recommends A, which we denote by MA in the expression

below. Thus, the naive steady-state belief is

z(x∗) ≡ Pr(good |MA; x∗)

=
Pr(MA|good; x∗)p

Pr(MA|good; x∗)p+ Pr(MA|bad; x∗)(1− p)

=

(
(1−mG)2 + 2mG(1−mG) (x∗−1)

4

)
p(

(1−mG)2 + 2mG(1−mG) (x∗−1)
4

)
p+

(
(m2

B + 2mB(1−mB) (x∗−1)
4

)
(1− p)

=
3

3 + x∗
, (1)

where we have used the fact that, in the Selection treatment, mG = 0 and mB = 1/3.13

Equation (1) makes explicit that the sample selection problem facing the subject is

endogenous. The reason is that the probability that the majority recommends A

depends not only on the behavior of the two computers but also on the behavior of

the subject, x∗. In particular, the steady-state belief z(x∗) is decreasing in x∗; the

intuition is that, the higher the threshold, then the more likely the subject is to vote

for A, which means the more likely A is chosen when it is bad and, therefore, the

lower the observed payoff from A.

Because beliefs are endogenous, a naive steady-state is characterized as a fixed

point threshold x∗ with the property that: (i) given that the subject chooses strat-

egy x∗, then her steady-state belief is z(x∗), and (ii) the strategy x∗ is the optimal

threshold given belief z(x∗), i.e.,

z(x∗)× ur(5) + (1− z(x∗))× ur(1) = ur(x
∗). (2)

13Note that, in the No Selection treatment, z(x∗) = 1/4 for all x∗, as remarked earlier.
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In other words, the naive steady-state threshold x∗N(r) is the unique solution to equa-

tion (2).14 For example, if the subject is risk neutral, r = 0, then equation (2)

becomes 4/(1 + x∗/3) + 1 = x∗ and the naive threshold is x∗N = 3. Figure 3 plots the

naive threshold x∗N(r) as a function of the coefficient of relative risk aversion, r. As

expected, the threshold decreases as risk aversion increases.

To summarize, the steady-state naive and sophisticated predictions coincide for

the No Selection treatment. On the other hand, naive and sophisticated behavior

imply different treatment effects: For a given level of risk aversion, the naive steady-

state threshold increases and the sophisticated one decreases when going from the No

Selection to the Selection treatment.

2.5 Discussion of experimental design

Now that we introduced the experiment and discussed the main theoretical predic-

tions, it is easier to explain why we made certain choices in the experimental design.

Choice of environment. As illustrated by the examples in the introduction, the

endogenous selection problem arises in a wide range of environments. We focus on

a collective decision problem where the unobservable variable that leads to selection

is the private information of other agents for three main reasons. First, as reviewed

in the introduction, there is a large literature that focuses on mistakes in environ-

ments in which other players have private information. Second, our previous work

(Esponda and Vespa, 2014) looked at a collective action environment but followed the

more standard approach of telling the primitives to the subjects. By focusing on the

same environment, we can directly contrast our results to the previous literature and

understand the effect that lack of counterfactuals and primitives have on behavior.

Third, to concentrate on the selection problem we wanted to make the inference prob-

lem as simple as possible. In our environment, subjects only need to learn the chance

that a project is good vs. bad. In an auction environment, for example, subjects

would need to learn both the value of an item and the probability of winning it.

Lack of primitives and counterfactuals. We do not provide primitives or counter-

factuals to subjects because it is the lack of both types of information that results in

14The solution is unique because the LHS of equation (2) is decreasing (because z(·) is decreasing)
and the RHS is increasing.
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the selection problem that we wish to study. If subjects knew the primitives, then the

problem exactly reduces to the problem studied in previous papers, and the source of

the mistake is relatively well understood (e.g., Charness and Levin (2009), Ivanov et

al. (2010), Esponda and Vespa (2014)). If subjects observed the counterfactuals, then

the problem eventually reduces to the problem studied in previous papers, because

subjects who pay attention to the data will learn the true primitives correctly (our

findings already suggest that they would learn these primitives pretty well). The in-

troduction discusses why it is interesting to depart from the standard case. Moreover,

the subject would have no influence over the observed data and, hence, there would

be no endogenous sample selection problem to study.

Use of computers and stationarity. The use of computers (as opposed to letting

subjects interact with each other) is to make the environment stationary. This is

not to downplay the importance of non-stationary environments in real life, but it

seems sensible to introduce changes one at a time and to start by understanding how

people respond to sample selection in stationary environments before moving on to

non-stationary settings.

Mistakes of the computers. In the Selection treatment, mistakes need to be asym-

metric (i.e., different in the good and bad states) in order for the recommendations

of the computers to be informative and, hence, to obtain selection effects. We chose

a zero mistake rate in the good state because it makes it easiest for a subject who

understands the possibility of selection to account for it. Under this choice, every

time a subject causes A to be chosen, she finds out that A is bad.

Size of incentives. The incentives to behave optimally are fairly small in our

setting because subjects are pivotal with a probability of one third. The significant

treatment effects that we obtain suggest that subjects are indeed responding to these

small incentives. Similar response to small incentives have been found in previous

work (e.g., Esponda and Vespa, 2014). Moreover, incentives are also realistically

small in the type of collective action problems that our experiment represents, and

the aggregate effects of individual actions tend to have large welfare consequences.
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Figure 4: Convergence rates by treatment.

3 Results

We organize the presentation of the results around five main findings. Motivated by

the results, in Section 4 we propose and estimate a new model of partial naiveté.

Finding #1. The direction of the treatment effect is consistent with

naive, not sophisticated, steady-state behavior:

The first question is whether it is appropriate in our setting to focus on steady

states, i.e,. whether or not behavior actually converges. For each round k in Part

I of the experiment, we say that a subject chooses a convergent threshold if she

chooses the same threshold in all remaining rounds, from k to 100. Figure 4 shows

convergence rates in the population for each round in Part I, by treatment. For

example, in round 30, only 18% of the subjects in the No Selection treatment and

29% in the Selection treatment choose convergent thresholds. By round 90, however,

these rates increase to 83% and 79%, respectively. Thus, we next focus on explaining

steady-state behavior, although the figure also cautions that this is appropriate in

our setting because subjects have a lot of experience (more so than in the typical

experiment).

Figure 5 shows the average observed threshold choice in each round by treatment.
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Recall that x takes only a finite number of values, so that we can only infer that the

threshold of a subject falls in an interval. For concreteness, we define the observed

threshold to be the midpoint of the appropriate interval. For example, if a subject

chooses A for all x̃ ≤ 1.75 and chooses B for all x̃ ≥ 2, then her preferred threshold

is somewhere in the interval [1.75, 2], and we code the observed threshold as (1.75 +

2)/2 = 1.875. The left panel of Figure 5 includes all subjects. The right panel of

Figure 5 includes only subjects who choose a convergent threshold in round 91, i.e.,

whose behavior remains the same in the last 10 rounds (about 81% of subjects; see

Figure 4). We refer to these subjects as the subjects who converge.

The patterns in the data are similar whether we look at all subjects or only those

subjects who converge. Early in round 25 (which is the first round where we observe

a threshold choice), subjects have yet to receive most of their feedback and, not sur-

prisingly, the average thresholds are similar in each treatment. As the experiment

progresses and subjects observe more feedback, the average threshold in the Selec-

tion treatment remains above the No Selection treatment and the gap widens. Recall

that in the No Selection treatment, on average, subjects will observe that A is good

about 25% of the time (irrespective of their pivotality). Not surprisingly, the average

threshold significantly decreases with experience in the No Selection treatment. In

the Selection Treatment, in contrast, behavior depends on whether a subject is so-

phisticated or naive. A sophisticated subject realizes that, every time she is pivotal,

A is bad. Thus, the sophisticated threshold converges to 1. In the naive case, a

subject believes that the probability that project A is good is closer to 50% than to

25%, since this is what is observed in her upward-biased sample; thus, there should

be a positive treatment effect. As observed in Figure 5, the direction of the treatment

effect is clearly consistent with naive, not sophisticated, behavior.15

Because our objective is to explain steady-state behavior, from now on, we will

focus on explaining behavior in the last rounds of the experiment, where beliefs and

behavior have presumably converged and steady-state predictions are potentially ap-

plicable. Also, it seems contradictory to use a steady-state prediction to explain

behavior that does not converge. Thus, from now on we will exclusively look at those

subjects who converge, i.e., the 82% of subjects who choose the same threshold in

15Naiveté also explains why convergence is slower under No Selection (see Figure 4). A subject
who starts with a uniform prior will take longer to converge if the observed feedback is that 25% of
projects are good (No Selection) vs. about 50% (Selection).
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Figure 5: Mean thresholds in all rounds by treatment. The left panel shows the mean threshold

for all subjects, for each round and treatment. The right panel shows the same information but only for subjects

whose behavior converges in the sense that their threshold choice is constant for the last 10 rounds (approximately

80% of subjects in each treatment).

each of the last 10 rounds, and refer to their threshold choices as their convergent

thresholds. In Appendix A, we replicate the analysis with all the subjects and we find

essentially the same results. For those subjects who converge, the mean convergent

threshold is 2.03 under No Selection and 2.42 under Selection; the median convergent

thresholds are 1.88 and 2.50, respectively. The differences in the mean (0.39) and the

median (0.62) are both statistically significant at the 1% level.16

Finding #2. There is no shift of mass to lower thresholds under Selec-

tion compared to the No Selection treatment:

Even though average behavior is consistent with naiveté, it could still be possible

that some subjects are sophisticated and choose very low thresholds in the Selection

treatment. Figure 6 shows that this is not the case: the empirical distribution of

convergent thresholds for the Selection treatment first-order stochastically dominates

the distribution in the No Selection treatment.17 Thus, there is essentially no evidence

of sophistication in this experiment.

16To test for differences in the mean, we run a regression with the convergent threshold on the
right-hand side and a dummy variable for the treatment as a control. We compute the hypothesis
test using robust standard errors. To test for differences in the median we use the same dependent
and control variables, but run a median quantile regression. If we use all subjects, the mean threshold
in round 100 is 2.00 under No Selection and 2.38 under Selection; the median round 100 thresholds
are 1.88 and 2.38. The differences are significant at the 1% level.

17We test for first order stochastic dominance using the test in Barrett and Donald (2003). The
test consists of two steps. We first test the null hypothesis that the distribution under the Selec-
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Figure 6: Distribution of convergent threshold choices, by treatment. Convergent threshold

choices under Selection first order stochastically dominate choices under No Selection.

Finding #3. Reported beliefs are consistent with naive (biased) beliefs,

not with sophisticated beliefs:

Recall that, after round 100, we ask subjects to report their beliefs. While one

has to be cautious when using reported beliefs to draw conclusions about behavior,

here we use the reported beliefs simply to assess what it is that subjects are paying

attention to (if anything) and as a robustness check to confirm whether subjects are

really being naive. Table 2 compares, for each treatment, the averages in the data

and the subjects’ average responses. For the averages in the data, we consider both

the true, realized averages (as observed by the researchers) and the averages that

would be estimated by a naive subject from the observed data. (The question on the

chance A was good conditional on being pivotal was asked last but appears in the

second row of the table; see Section 2 for details).

The first row in Table 2 shows the chance that A is good as observed in the data

and reported by the subjects. In the No Selection treatment, the state was good 25%

tion treatment either first order stochastically dominates or is equal to the distribution under No
Selection. We cannot reject this null hypothesis, the corresponding p−value is 0.77. We then test
the null hypothesis that the distribution under the No Selection treatment first order stochastically
dominates the distribution under Selection. We reject the null in this case, with a corresponding
p−value of 0.001.
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mean values No Selection treatment Selection treatment
Data Data

Report
Data Data

Report
(true) (naive) (true) (naive)

% Good 25.0 24.9 30.6 25.6 56.1 48.4

% Good | piv 26.1 24.9 28.0 0 56.1 44.6

% mistake | Good 49.7 49.9 43.4 0 50.1 36.1
% mistake | Bad 50.0 50.0 49.1 32.3 49.9 40.4

Table 2: Mean values of data and reported beliefs, by treatment. Reported beliefs are

consistent with naive (biased) beliefs, not with sophisticated beliefs.

Legends: % Good: percentage of times that project A was good; % Good | piv: percentage of times that project A

was good conditional on the subject being pivotal; % mistake | Good: percentage of times a computer mistakenly

votes for B when project A is good; % mistake | Bad: percentage of times a computer mistakenly votes for A when

project A is bad; Data (true): actual figure in the data; Data (naive): actual figure a naive subject would report

given the data; Report: figure reported by subjects in Part II.

of the time and, of the times in which subjects got to observe whether A is good or

bad (i.e., when the majority recommends A), alternative A turned out to be good

24.9% of the time (recall the true probability is 25% and that there is no selection,

which explains why the true and naive estimates from the data are similar). On

average, subjects report that the chance that A is good is 30.6%. For the Selection

treatment, the state was good 25.6% of the time (again, the true probability is 25%).

But, on average, subjects observe that, conditional on having information about A

being good or bad, alternative A was good 56.1% of the time. As explained earlier,

this higher number reflects the fact that the sample is biased because computers’

strategies are correlated with the state of the world. On average, subjects report that

the chance that A is good is 48.4%, which is much closer to the naive figure in the

data (56.1%) than to the true figure (25.6%). In particular, it appears that subjects

in both treatments are, on average, paying attention to the data, but they are doing

so naively.

The second row in Table 2 shows the results when subjects are asked about the

chance that A is good conditional on being pivotal. In the No Selection treatment,

where the pivotal event conveys no information, the true and reported averages are

similar to the unconditional case. In the Selection treatment, as explained earlier,

there is not one case in which A is good when a subject is pivotal, so the realized

proportion of good conditional on being pivotal is 0%. On average, subjects miss this

point and report 44.6%.
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Finally, the last two rows show realized rates and beliefs for the computers’ mis-

takes. As expected, the true realized rates in the data are very close to the true

rates, which are mG = mB = 1/2 under No Selection and mG = 0, mB = 1/3 under

Selection. The naive estimates are given by the unconditional proportion of times

that computers vote A, which is close to the true unconditional probability of 1/2.

In the No Selection treatment, subjects are on average correct to respond that com-

puters’ strategies are uninformative. In the Selection treatment, subjects realize that

the rates of computers’ mistakes are lower, but are far from realizing that comput-

ers make no mistakes when project A is good. Overall, it appears that, on average,

subjects pay attention to the data, make naive inferences, do not realize that the

computers make no mistakes when project A is good, and mostly fail to account for

sample selection (though reported beliefs are slightly below naive estimates from the

data).

Finding #4. Convergent thresholds are a bit lower than predicted by

the naive steady state:

While naiveté correctly predicts the direction of the treatment effect, a more

stringent test is whether it can rationalize the levels observed in the data. As discussed

earlier, the average (median) convergent threshold is about 0.39 (0.62) points higher

under Selection compared to the No Selection treatment, while the naive steady-state

solution predicts a difference of about 1 point (where the exact difference depends

on the risk coefficient, see Figure 3). Similarly, we showed that reported beliefs are

slightly lower than naive estimates from the data. There are two issues that we

need to tackle, however, for a more precise comparison of the data to the theoretical

predictions. First, we need to control for risk aversion. Second, the theoretical

prediction is based on the assumption that beliefs have converged to steady-state

beliefs, but the actual data observed by each subject is of course noisy and does not

coincide with the theoretical, steady-state prediction.

To tackle the first issue, we use responses from Part III of the experiment to

estimate a CRRA risk coefficient for each subject.18 To account for the second issue,

we assume that a subject’s (naive) belief is determined by the observed data (i.e., the

18We let subject i’s threshold in the kth (out of five) decision in Part III be given by x∗ik =
f(ri, zik)+εik, where εik is noise, zik is the known probability that A is good, ri is the risk coefficient,
and f is the optimal decision for a CRRA utility function; see Section 4.1, where we use this equation
in the model of partial naiveté, for more details.
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Figure 7: Observed vs. naive prediction. The figure plots the predicted naive thresholds (based on

the estimated risk coefficient and beliefs for each subject) against the actual choice, for rounds 91 through 100 (where

the size of the plotted data point is proportional to the number of subjects). The figure confirms that naiveté, despite

being consistent with the treatment effect, over-predicts choices for the Selection treatment.

relative proportion of good vs. bad in her data) and not by the theoretical steady-

state prediction. Figure 7 shows the comparison between data and theory when

accounting for these two issues. On the horizontal axis, we plot, for each subject and

for each round of the last 10 rounds, the predicted naive threshold (recall that this is

also the predicted sophisticated threshold for the No Selection treatment, but not for

the Selection treatment) when using both her estimated risk coefficient and the data

she observes up to that round. On the vertical axis, we plot the threshold chosen by

the subject in that particular round. The size of a data point is proportional to the

number of subjects characterized by that data point.

If the theoretical prediction were perfect, all data points would lie on the 45 degree

dashed line in the figure. Of course, there are several reasons why the data might

not perfectly fit the theory, including the fact that our estimates of risk aversion and

beliefs are noisy. The main point from Figure 7, however, is that theory can ratio-

nalize a large proportion of the choices in the No Selection treatment. For example,

62% of all observations lie within 0.25 points of the 45 degree line. Instead, in the

selection treatment, the predicted naive threshold is at least 0.25 points higher than
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the convergent threshold in 52% of the cases. In other words, the naive prediction

systematically over-predicts threshold choices in the Selection treatment.

Finding #5. Subjects are more likely to change their thresholds in a

given round if they were pivotal in the previous round:

The evidence so far suggests that subjects are naive but that they partially account

for the selection problem by choosing thresholds that are a bit lower than the naive

threshold. One reasonable explanation for this (admittedly, unexpected) behavior is

that, while subjects do not know how to account for the information content of the

computers’ recommendations, they might be more likely to adjust their thresholds in

rounds in which they are pivotal.

The top panel of Table 3 shows the results of a linear regression of an indicator

variable for whether or not a subject changes her threshold in round t on two other in-

dicator variables (and their interaction) that capture whether the subject was pivotal

in the previous round (Pivt−1) and whether project A was chosen by a majority in the

previous period and hence she observed information about project A (Infot−1). It is

not surprising that observing some information (positive or negative) about project A

in a previous period increases the probability that a subject will change her threshold

choice; it does so by about 1.6 percentage points (from a baseline of about 4%). The

key finding, however, is that the interaction effect is more than three times stronger:

A subject is 5.3 percentage points more likely to change her threshold if she received

information and was pivotal in the previous round.

While the top panel looks at the probability of adjusting the threshold, the bottom

panel of Table 3 looks at the magnitude of the change. The dependent variable mea-

sures the difference between the threshold in rounds t and t− 1, and the independent

variables include indicators for whether or not a subject was pivotal and observed

positive or negative information about project A. Observing that A was bad leads

subjects to decrease their threshold by 0.024 points on average when they were not

pivotal and by about four times this magnitude, 0.092, when they were pivotal.19

19These numbers are small because the baseline probability of changing the threshold in a given
round is small; the results are similar if we restrict the regression to rounds in which a subject
changes her threshold. Also, the coefficient on being pivotal and observing that A was good is
positive (as expected), but it is estimated with a higher standard error due to the fact that this
coefficient is only identified from the No Selection treatment (because the event has zero probability
under Selection).
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Dep. Var.: 1{Tt 6= Tt−1} Coeff. Std. Err.

Constant 0.040*** 0.006
Pivt−1 0.003 0.005
Infot−1 0.016** 0.007

Pivt−1×Infot−1 0.053*** 0.013

Legends: The dependent variable and the controls are dummy variables. 1{Tt 6= Tt−1}: takes value 1 if the threshold
in period t is different than the threshold in period t − 1. Pivt−1: takes value 1 if the subject was pivotal in the
previous period. Infot−1: takes value 1 if in the previous period the subject received feedback on whether project A
was good or not.

Dep. Var.: Tt − Tt−1 Coeff. Std. Err.

Constant 0.008*** 0.002
(Piv and Good)t−1 0.020 0.025
(Piv and Bad)t−1 -0.092*** 0.018

(Not Piv and Good)t−1 -0.002 0.005
(Not Piv and Bad)t−1 -0.024*** 0.008

Legends: All controls are dummy variables. (Piv and Good)t−1 takes value 1 if the subject was pivotal, the company
invested in A, and it turned out to be Good. Other dummy variables are named accordingly. The excluded event is
the case when the subject did not receive information in the previous period because the company invested in B.

Table 3: Reduced Form Analysis: Reaction in Threshold to events in previous period.

Notes: (*), (**), (***) indicate significance at the 1, 5 and 10% level respectively. In both cases we report the results

of fixed effects panel regressions and we cluster standard errors by subject. Both regressions include 109 subjects that

converged and for each subject we use the last 74 rounds of part 1 (we lose one observation due to the lag). The

regressions pool subjects from both treatments. Conclusions do not change if the analysis is conducted by treatment

or if we add time dummies.
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The findings from Table 3 confirm that subjects tend to react more to pivotal

vs. non-pivotal events, which explains why their behavior can be consistent with a

partial adjustment of selection despite their inherent naiveté.

4 A Model of Partial Naiveté

Motivated by the finding that subjects are not sophisticated but seem, nevertheless,

to be responding more to feedback from pivotal rounds, we now propose and estimate

a model of partial naiveté.

4.1 Model

Recall from Section 2.4.2 that the steady-state belief for a naive subject is given by

z(x∗) in equation (1), page 14, which denotes the probability that A is observed to be

good conditional on having observed whether A is good or bad—which, in particular,

depends on the subjects’ steady-state strategy, x∗. The implicit assumption underly-

ing this definition of naive beliefs is that a subject puts equal weight to an observation

about A irrespective of whether or not she was pivotal. We now generalize this notion

by letting η ∈ (0,∞) be a parameter that denotes the weight that a subject puts on

pivotal vs. non-pivotal rounds. The corresponding steady-state belief is

z(x∗, η) =

(
(1−mG)2 + η2mG(1−mG) (x∗−1)

4

)
p(

(1−mG)2 + η2mG(1−mG) (x∗−1)
4

)
p+

(
(m2

B + η2mB(1−mB) (x∗−1)
4

)
(1− p)

,

(3)

where η now multiplies the events that a majority recommends A and that the sub-

ject’s recommendation is pivotal.

Assuming, once again, CRRA utility function for convenience, the steady-state

strategy x∗η(r) is the unique solution to

z(x∗, η)× ur(5) + (1− z(x∗, η))× ur(1) = ur(x
∗). (4)

The naive and sophisticated predictions discussed in Section 2.4 are special cases of

this model. As η goes to infinity, a subject puts increasingly higher weight on pivotal

rounds, and it is easy to see that the threshold converges to the sophisticated, optimal
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threshold, i.e., limη→∞ xη(r) = xS(r) for all risk coefficients r. And the case η = 1,

which places equal weight on pivotal vs. non-pivotal rounds, corresponds to what

we called the naive threshold (or, equivalently, what Esponda (2008) calls a naive

behavioral equilibrium), i.e., x1(r) = xN(r) for all risk coefficients r. The parameter

η captures intermediate cases where subjects are naive but account for selection by

putting higher weight on feedback from pivotal rounds. One way to rationalize this

belief formation process is to assume that subjects pay attention to data from pivotal

and non-pivotal rounds with probability α and β, respectively. Equation (3) can be

interpreted as the steady-state belief where η = α/β.20

We now specialize the model to each of our treatments. For the No Selection

treatment (p = 1/4,mG = mB = 1/2), equation (3) becomes

z(x∗, η) =

(
.25 + η.5 (x∗−1)

4

)
.25(

.25 + η.5 (x∗−1)
4

)
.25 +

(
.25 + η.5 (x∗−1)

4

)
.75

= .25.

As explained earlier, there is no selection in the data, and beliefs are always .25,

irrespective of the weight placed on pivotal vs. non-pivotal rounds. For the Selection

treatment (p = 1/4,mG = 0,mB = 1/3),

z(x∗, η) =
.25

.25 +
(

1
9

+ η 4
9

(x∗−1)
4

)
.75

.

As η increases, more weight is placed on pivotal rounds, where A always turns out

bad, and, therefore, z(x∗, ·) decreases.

Figure 8 plots the threshold prediction for several values of η. The prediction

for the No Selection treatment is the same for all values of η and given by the solid

line. The prediction for the Selection treatment is decreasing in η, with η = 1 (naive

behavior) and η ≈ ∞ (sophisticated behavior) representing two extreme cases in the

figure.21 The figure also illustrates that the optimal threshold is not very responsive

to η; for example, a risk neutral subject, r = 0, would exhibit no treatment effect even

if she placed η = 8 times more weight on pivotal vs. non-pivotal rounds. The reason

is that very high weights are needed to compensate for the fact that the probability

20Note that in this case α and β are not separately identified; only their ratio affects beliefs.
21The model also allows for η < 1, which means that non-pivotal rounds receive relatively higher

weight.
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Figure 8: Theoretical prediction for Selection and No Selection treatments for several
values of η.

of being pivotal is small to begin with (1/3 in this case). Because we find a positive

treatment effect (Finding #1) but also that the theoretical prediction with η = 1 is

above observed values (Finding #4), Figure 8 already suggests that the average η

in the population is between 1 and 8. In the next section we obtain a more precise

estimate of the distribution of η.

4.2 Empirical estimation and results

For each subject we have data from decisions in Part I (either No Selection and

Selection treatments) and Part III (decision problem). For each case, we postulate

that thresholds are chosen according to

x∗ik = f(ri, zik) + εik, (5)

where x∗ik is the desired threshold choice of subject i in decision k, ri is the CRRA risk

coefficient, zik is subject i’s belief that A is good, εik is noise that affects decisions, and

f is a function that maps the risk coefficient and belief to an optimal threshold choice.

We assume that f is derived from a CRRA utility function, i.e., fik = f(ri, zik) solves
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zik × uri(5) + (1− zik)× uri(1) = uri(fik), where uri is the CRRA utility function.22

We proceed in two stages. First, we use data from the decision problem (Part

III) to estimate the distribution of risk coefficients ri and decision noise εik. Recall

that in the decision problem, subjects face five instances of the problem from Part

I, with two exceptions: (i) the outcome is determined by their own decision alone,

without interference from other players/computers, and (ii) subjects are told the true

probability that A is good. Each subject faces five cases, and the probability that A

is good is known by the subject in each case. Thus, the value of zik is fixed for each

of these five cases, k = D1, ..., D5, were D stands for decision problem. In particular,

we have ziD1 = .1, ziD2 = .3, ziD3 = .5, ziD4 = .7, and ziD5 = .9. For concreteness, we

assume that the risk coefficient r ∼ N(µr, σ
2
r) and the decision noise ε ∼ N(µε, σ

2
ε)

are normally distributed and independent of each other and across subjects, and we

estimate the parameters using (simulated) maximum likelihood.

In the second stage, we use the estimates from the previously described stage

and data from Part I of the experiment to identify the extent to which subjects are

partially naive. To be consistent with the steady-state model, we use data from rounds

in which behavior has stabilized. In particular, we look at data from rounds T to 100,

where we vary T from 70 to 100 for robustness purposes. We let k = NT , NT+1, ..., N100

and k = ST , ST+1, ..., S100 index data from rounds T through 100 in the No Selection

and Selection treatments, respectively.

The difference with respect to the decision problem is that subjects have beliefs

about zik and we do not directly observe these beliefs. We follow the model in

assuming that these beliefs depend endogenously on the feedback observed by the

subjects. We infer beliefs using the data actually observed by the subjects rather

than the theoretical steady state. The reason is that the steady-state belief predicted

by the theory is accurate provided that enough time has been spent in the steady

state; according to our data, in contrast, most time has been spent outside the steady

state.23 In particular, we assume that, for observations from both treatments k = Nt

22In the data, we do not observe the exact threshold x∗ik because we only observe a decision
contingent on a finite number of values of x. Each value of x∗ik, however, translates immediately into
a choice in our environment. For example, if x∗ik = 2.33, this means that a subject would choose A
for all values of x lower or equal than 2.25 and B for all values of x higher or equal than 2.5. We
account for this issue when writing down the likelihood function.

23Alternatively, in Appendix A we estimate the model using beliefs reported in Part II and obtain
similar qualitative results, although the mean estimate for partial naiveté is slightly lower. As
pointed out by the literature, however, there might be issues from using reported beliefs as opposed
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and St and all rounds t = T, ..., 100, a subject’s belief is

zik = g(dataik, ηi) + νik,

where g(dataik, ηi) is the empirical counterpart of equation (3), which depends on the

data observed by subject i up to round k and her parameter of naiveté ηi, and νik

denotes noise in the subject’s estimation process in round k.24 Intuitively, data from

the No Selection treatment is used to identify the belief noise ν (since the function g(·)
is essentially constant in η under No selection) and data from the Selection treatment

is used to identify η. For concreteness, we assume that the logarithm of the naiveté

coefficient ln η ∼ N(µlnµ, σ
2
lnµ) and the belief formation noise ν ∼ N(µν , σ

2
ν) are

normally distributed and independent of each other and across subjects, and we

estimate the parameters using (simulated) maximum likelihood.25

The top panel of Table 4 presents the maximum likelihood estimates (including

standard deviations and 95% confidence intervals) when we use data from the last 10

rounds of part 1. With the estimates for the distribution of ln η, we plot the resulting

distribution of η (Figure 9) and obtain the mean and median of η as 6.08 and 3.14,

respectively. Thus, the median subject puts 3.14 times more weight on pivotal vs.

non-pivotal events.26 The result is consistent with the reduced-form results from

Section 3, which suggested that subjects were three or four times more likely to

change their thresholds after facing a pivotal event.

The bottom panel of Table 4 presents further information on the median of η.

Based on bootstrapping the maximum likelihood estimates we obtain a distribution

for the median of η. If we use data from the last 10 rounds of part 1 (T > 90), the 5th

and 95th percentiles of the median of η are 1.70 and 6.04, respectively. This shows that

the estimate of the median is concentrated around the maximum likelihood estimate

(3.14) and is far from being consistent with sophisticated behavior. As explained

earlier, even much higher weights on pivotal rounds are not enough to approximate

to estimating beliefs from actions (e.g., Nyarko and Schotter, 2002).
24Under this specification, zik might fall outside the [0, 1] interval, in which case we set it equal

to 0 or 1. This turns out not to be a serious constraint because the estimated variance of ν is fairly
small.

25In particular, the naiveté coefficient η has a lognormal distribution with mean E(η) = eµln η+
σ2
ln η
2

and variance V ar(η) = (eσ
2
ln η − 1)e2µln η+σ

2
ln η .

26Given the asymmetry in the distribution of η we focus on the median as a measure of central
tendency. In the Appendix A we present more detailed information on the mean of η.
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Estimate Std. Err. 95% Conf. Interval

µln η 1.145 3.681 [0.347, 2.337]

σln η 1.150 1.114 [0.070, 2.032]

µr 0.533 0.157 [0.283, 0.905]

σr 0.461 0.128 [0.237, 0.758]

µε 0.143 0.071 [0.033, 0.317]

σε 0.453 0.064 [0.325, 0.565]

µν 0.024 0.042 [-0.042, 0.107]

σν 0.140 0.096 [0.105, 0.227]

Maximum likelihood estimates. Standard errors and the 95% confidence intervals are computed using
1000 bootstrap repetitions. The estimation uses data from part 1 for rounds higher than 90 (T > 90).

Percentile T = 100 T > 90 T > 80 T > 70

5 1.98 1.70 0.75 0.51

25 2.53 2.35 1.73 1.78

50 3.03 3.00 2.62 2.89

75 3.67 3.69 3.41 4.58

95 4.94 6.04 5.55 21.64

Statistics of the Median of η using the Bootstrap. The bootstrap delivers 1000 estimations of the
parameters of the model. For each repetition we compute the median of η and the table reports percentiles of the
distribution. Each column indicates the rounds of part 1 that were included in the estimation.

Table 4: Maximum Likelihood Estimation and the Distribution of η.
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Figure 9: Estimated distribution of η. The dashed line indicates the median at 3.14.

sophisticated behavior, since subjects are pivotal with a relatively small probability

of 1/3. Thus, the increased relative weights on pivotal events is not nearly enough

to correct for mistakes. As a robustness exercise, the other columns of the bottom

panel show how the computations change depending on the data from part 1 that we

include in the estimation. We confirm that the main conclusions are unaffected by

the choice of T .27

Finally, we briefly comment on the other estimates of the top panel of Table

4. The results for the risk coefficient and noise levels appear to be reasonable and

consistent with previous work. For example, the mean subject is risk averse with a

risk coefficient of relative risk aversion of 0.533, and 95% of the population has a risk

coefficient between 0.283 and 0.905, which is consistent with previous estimates (see

Holt and Laury (2002), Harrison and Ruström (2008)).28 The estimates also suggest

that it is important to account for noise in actions to avoid biasing our results for the

27Appendix A provides detailed results on several robustness exercises.
28Following the maximum likelihood procedure in Harrison and Ruström (2008) we can estimate

the coefficient of risk aversion using answers to the Holt-Laury choice lists that we collected at the
end of the session. The coefficient equals 0.574 or 0.567 depending on whether we use only subjects
who converge or all subjects. These estimates are comparable to those reported in Table 4 (which use
data from Part III) and to previous estimates in the literature; for example, Harrison and Ruström
(2008) report an estimate of 0.66 using data from Hey and Orme (1994).
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coefficient of partial naiveté. The mean decision noise is 0.143, which is a bit more

than half the distance between two thresholds (recall that thresholds are 0.25 points

apart). Noise in beliefs is estimated to be fairly small, with a mean of about 0.02 and

standard deviation of 0.14.

5 Conclusion

Accounting for selection is a challenge not only for empirical researchers but also

for economics agents in a wide range of important environments. Yet most models

assume that agents successfully tackle selection problems. We design an experiment

where anyone who understands sample selection can easily account for it. The design

incorporates assumptions, such as the provision of no information about primitives

and counterfactual outcomes, that are nonstandard in the literature but are crucial to

study endogenous selection. We find that essentially no subject optimally accounts for

endogenous selection. On the other hand, behavior is far from random but actually

quite amenable to analysis. Subjects partially account for selection by placing three

times more weight on pivotal vs. non-pivotal observations, thus mitigating losses from

their (suboptimal) risky behavior. While more experiments are needed to confirm

behavior in these types of settings, our results suggest that we might want to think

more seriously about the types of identification problems faced by economic agents.
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