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House Price Index Methodologies

In 2005, both forbes.com (http://www.forbes.com/2005/04/26/cx_sc_0426home.html) 
and cnnmoney.com ( http://money.cnn.com/pf/features/lists/hpci_data/index.html) published
online articles on the topic of the US’s most expensive housing markets.    Each of the two articles
constructed rankings of housing markets based on the price of a “typical” house, but the method of
defining typical was quite different in the two surveys.  The ranking by forbes.com used the US zip
code as the area of analysis; that is, each zip code was defined as a distinct housing market.  For each
zip code, the survey constructed a  median sales price, the price which is at the halfway point in a list of
most expensive to least expensive units in that zip code.    As forbes.com itself noted, the unit that
has the median price can differ substantially from place to place, and comparing prices across these
locations will be like comparing apples to oranges.    Atherton, California, a community located in
the bay area of Northern California, had the highest median sales price (of $2.4 million), but one of
the reasons for this was because the median house in Atherton is a large house, on a large plot of
land with many expensive amenities.   According to the 2000 Census, the median number of rooms
in Atherton’s  zip code (94027) is  8.2, which is certainly larger than the national median of 6.2.
And so the comparison is of apples to oranges. 

The comparison at cnn.com takes a different approach.  They asked a leading real estate
brokerage service to find, for each housing market, the price of “a 2,200-square-foot house with 4
bedrooms, 2 1/2 bathrooms, a family room and a two-car garage” located in a neighborhood
"typical for corporate middle-management transferees."    They are trying to compare apples to
apples.   The cnn.com survey seems to use market areas larger than zip codes, so it is a little bit
difficult to compare  its findings to that of the forbes.com report.  Nevertheless  it is quite
instructive to note that the top place on the cnn.com list was La Jolla, California, a beach area  in
San Diego County.  On the forbes,com list the zip code corresponding to La Jolla ranked only 73rd .  
 It is tempting, to infer that homes in La Jolla are smaller than the mansion communities seen at the
top of the Forbes list, but that on a size-and-quality adjusted basis, La Jolla is the pricier location. 
Indeed, the median number of rooms for owner occupied units in the 92037 zip code was at the
national median of 6.2.  

The heterogeneous nature of housing precludes our ability to make price comparisons over
space and time simply by taking averages in different locations or in different years.  We must
compare like to like using price indices.  In the case of “ordinary” price indices like the Consumer
Price Index, a basket of n commodities of quantities x=x1...xn is posited.  The prices of those
commodities in market 1 are given as p1=p11...p1n and the resultant expenditure is Ep1iqi where
summations throughout are over the index i=1...n.  Prices from a spatially or temporally distinct
market 2 are also gathered and the expenditure on the same basket is also computed.  Comparison is
usually taken in the form of a ratio, where market 1 (the numeraire market) expenditure is in the
denominator and the comparison is in the numerator and for clarity the result is multiplied by 100:

http://www.forbes.com/2005/04/26/cx_sc_0426home.html
http://money.cnn.com/pf/features/lists/hpci_data/index.html


In the case of comparing housing prices, the situation is somewhat more intricate.  The quantities,
Xi, are not items on the grocer’s shelves but attributes of a “typical” house.  In the case of the
cnn.com survey these were quantities of square feet, bedrooms, baths, garage spaces, family rooms,
and neighborhood quality.  But what “prices” were assigned to these “commodities”?  The usual
answer lies within regression estimation, in this context sometimes called mass appraisal.   A sample
of sales within a particular market i, including the sale price and characteristics 1 through k of the
associated property, are gathered, and a regression of the form

(1)

is run.  The $’s, i.e. the regression weights, or parameters,  for each characteristic, are estimated for
each city, and interpretable in this linear case as the implicit prices of the associated characteristics are
estimated.  For any given house, the set of attributes, X1 through Xk can be fed into the equation and
a valuation, an appraisal, of that house can be calculated. Since the weights are specific to each
market, a price index similar to (1)  can be calculated.   One market is chosen as the numeraire
market and cross-sectional price indexes can be calculated.   The existence of the intercept term,  $0,
absent from the calculation of traditional prices indexes, should be noted.  Informally speaking, the
value of this term will derive from all of the characteristics of the housing market that are constant
across the units in that market.  Representing, as it does, things like sunshine and proximity to
ocean, it can be a major contributor to housing price differentials across cities. 

The study by Palmquist (1984) is convenient for exemplary purposes.  Palmquist, using FHA
mortgage insurance filings,  estimated appraisal equations for the Atlanta, Denver, Houston,
Louisville, Oklahoma City, and Seattle metropolitan areas.    Table 1 provides a list of characteristics
used in the regression, and the $-weights for each city.  A zero entry means that that particular
attribute was not included in the regression for that city, a circumstance which arose because the
FHA did not collect all the information for all the cities, possibly because of a dearth of houses with
said attribute (as perhaps is the case for Swimming Pools in Seattle).   In any case, we set the values
of the quantities of characteristics to the values in the column labeled X*.  These are  zero for any
attribute that is missing from any of the cities’ hedonic regressions. The  row labeled “Constant
Quality Price”  provides the appraisal of a house with X* in each metropolitan area-- that is, $0+
E$iXi for each city.  

There are differences. Seattle’s price is the highest, at over $60,000 (recall this is 1984),
followed by Denver, at just over $50,000.   Atlanta and Houston are the lowest priced markets at
just over $35,000.   In order to transform these numbers into a price index of the form above, we
need to choose one city as a base city (against whom all the other cities are compared).  Any of them
can be chosen; in this case Atlanta serves that role.  We can then construct the price index as

(2)

where the A subscripts identifies parameters from Atlanta. The last row of Table 1 shows the results
of this calculation.  Obviously, Atlanta’s index is 100; Houston’s value of 98.1 indicates that a
comparable house in that area costs about 2% less, while Seattle’s value of 160 indicates that it costs
60% more there than Atlanta. 

We noted above that the comparing indexes depends rather importantly  on the quantities. 



So it is with the hedonic price indexes here.  It can be the case that the ranking of “most expensive
cities” using one set of attributes can be reversed when using another set of attributes.  An example
of this phenomenon is also on display in Table 1.  In the last column (labeled X**)  a second set of
attribute values is displayed.  This set of attributes is meant to suggest a home of somewhat lower
overall quality.  In particular, both the size of the home and the size of the lot have been reduced. 
The last line of the Table provides the index number for each city, where it can be seen that changes
in the ordering from most expensive to least expensive have taken place.  In particular Denver is
now the most expensive city, taking over from Seattle, whose price has taken a substantial drop in
this new index.    Thus, care must be taken to insure that the attribute sizes chosen are truly
“representative” dwellings, although what constitutes representative will depend on the purpose of
constructing the index.

There are three important issues that the previous simple example has ignored:
(1) Omitted variables: The vector of variables will not necessarily contain all of the

important determinants of housing prices.  This is understood in regression analysis, and the role of
the error term is to encompass all of the unobservable influences on housing prices within the
database.  The problem arises when there are, roughly speaking, systematic differences in those
unobservables across markets as this can cause bias in the estimated prices and therefore in the price
indexes..

(2) Nonlinearity: Because housing attributes are tied bundles of the attributes, there is no
particular reason why the relation between housing attributes and building price should be linear. 
Many alternatives to the linear model have been hypothesized, and one popular alternative used
below is the semilog function

              (3)

in which case the parameters are not prices, per se, but semi-elasticities.  The Laspeyre price index
(2) is replaced by 

         (4)

where s2 is the estimate of the variance term of the error in (3), and is included to provide an
estimate of the mean value of price, rather than the median (Malpezzi, Chun and Green, 1998). 
Other nonlinear forms are of course possible.

(3) Parsimony: Estimating equations (2) or (3) separately for each city market may be too
much too ask of the available data.  It can be plausible to assume that the intercept term is the major
difference in the index parameters, since the difference in capital prices (i.e. the price of structural
characteristics) may be arbitraged across locations.  Thus the following regression can be employed,
using the data from all markets, and assuming semilog form:

    (5)

where the ( parameters are coefficients of the h indicator variables Mj representing h of the h+1
cities in the database. Note that the semilog specification implies that these are estimates of the
percentage difference between the constant quality price in the indicated city and the base city



represented by $0, and so it itself an index number.  That is to say, the price index (4) reduces to 

      (6)

For small (, we can use the approximation exp(()=1+( and interpret it directly as the percentage
difference between the base market price and the ith market price.

We turn then to the problem of estimating housing price indexes for a given
location/housing market over time.  At its heart this presents no new issues. In the first instance one
can gather data where the sales or appraisals occur at different points in time, and treat those points
in time as if they were different markets.  The (say) Atlanta market in 1990 is a distinct market from
Atlanta in 2000 or any other year,  and one can estimate separate hedonic regressions for each of the
two markets, and proceed as above.  Or in the spirit of comment (3) above, one can simply estimate
a single regression with indicator variables for the different time periods in the data.  These can be
over any level of time aggregation that the data will support: years, quarters and even months.  The
regression would then take the form:

(7)

where Tj is a binary variable indicating that the sale, or the observation of the housing price took
place in time period j.   There are h+1 distinct time periods; and $0 is the intercept term which
represents the normalized period.  This is exactly analogous to equation (5) and the construction of
the index is as in (6) 

In research applications this  latter method seems to be preferred over the use of separate
hedonic regressions for each time period. Researchers seem to be more willing to assume constant
hedonic coefficients for the same location over time, than for different locations at the same time. 
This makes some intuitive sense.  Spatially distinct markets will have large differences in supply
and/or demand that would contribute to creating statistically significant differences in the regression
parameters.   This is less likely to be an issue when the same market is examined at different points
in time, although there are no guarantees that this would be the case.

A parsimonious version of (7) would replace the time variables with a time trend

       

 This variable W takes on the value 1 for the chronologically first time period in the data base, 2 for
the second, and so on.   It thus assumes that the time index increases at a constant percentage (if the
model is logarithmic) or amount (if it is in levels) each period.   This  model is a specialized case of
the previous approach where the coefficients in (7) behave according to the pattern c*j= (j.  Thus
the time trend can be tested using usual hypothesis testing procedures.  Note also that c can be
negative, if the data indicate falling housing prices.

There are obvious problems using time trends, since the restriction on the bj’s  may not be
true, and certainly will not if housing prices exhibit both increases and decreases over the sample
period.  One then has to balance the flexibility of the form to allow increases and decreases over
time, with the desirability of “smoothness”.  One might alleviate this problem with the use of higher
exponents of W in the regression.  Including W2 in the model would allow either a fall and



subsequent rise, or the opposite.  Additional cubic or even higher terms would capture any possible
pattern in prices.    Or one may invoke a spline or other nonparametric estimator of the time
parameters.

A temporal price index can alternatively be constructed using the increasingly popular
method of repeat sales.  Suppose you had a database of actual sales, and moreover that it included the
same house twice: a repeat sale.  For convenience, label these observations 1 and 2 and equally
conveniently assume that the sales took place in time periods one and two. The individual appraisals
for these two observations are:  

(8)

and

(9)

because of course the values of all the other time indicators are equal to zero. Now subtract (8) from
(9). If none of the attribute sizes changed between the two sales ( i.e. the X values are constant)  the
price difference would be:

(10)

Now, the difference between two error terms is just another error term (although perhaps one with
different properties, K. Case and Shiller (1989)).  Therefore we can write the above down in the
following way:

(11)

so that the percentage change in price is just the difference in index values b2 and b1 plus an error
term specific to that observation.  

Now imagine an entire database that has such pairs of observations of home sales.  That is,
each house has two observations, a first sale, and a second sale.  Combine each pair into a single
repeat-sales observation (as in (4.11)) , and write down a regression model of the form:

(12)

where the Tj’s are no longer indicator variables in the strictest sense.  Instead, they take on the value
of -1 for those observations which had  “first sales” in that time period  and +1 for those
observations which had their second sale during the time period (and zero otherwise).  For any given
observation the “fitted value” will be something like equation (11) with 1 and 2 being replaced by
the appropriate first and second sale time periods.  

Running the above regression provides estimates of the bj’s and,  with one further
modification, the sequence of (j’s form a mulitiplicative repeat sales index as presented originally by
Bailey, Muth and Nourse (1963).  The modification is the usual one, that an index needs a
normalization.  The usual procedure, following these authors is to let the first time period be the
normalization.  In the logarithmic model above, this amounts to setting the initial price equal to
zero.  The (-terms are then values relative to the first time period.  The index construction proceeds
as in equation (6).  This model basically underlies the well-known price indexes provided by the US



Office of Federal Housing Enterprise Oversight (http://www.ofheo.gov/HPI.asp) and by Freddie
Mac (http://www.freddiemac.com/finance/cmhpi). 

Examination of the repeat sales regression reveals the obvious advantage of this method,
which is that the actual attributes of the property are not among the regressors , and so it is unnecessary to
estimate attribute prices.  This is especially significant since both observed and unobserved attributes are
eliminated  and thus comment (1) above no longer has as much force.   The differencing operation
which takes place in the repeat sales model removes all attribute levels and so that source of  bias is
eliminated from the parameter estimates.  If the goal of the investigator is not to estimate attribute
prices but merely to derive constant quality time indexes of property, then the repeat sales model has
considerable appeal.  The research of K. Case and Shiller (1989) and the increased availability of
databases with repeat sales in them has caused the use of this model has exploded. 

The repeat-sales model is not, however, without its own faults (Meese and Wallace, 1997). 
One, the database is restricted to properties with multiple sales, which may be a small portion of the
overall database, and moreover, such properties may be a nonrandom sample.  Properties that sell
multiple times within a given time frame may be systematically different.  Also the premise of the
model is that the attributes do not change between sales, and that the coefficients of those attributes
do not change either.  This pair of assumptions is what allows the cancellation to take place.   But if
these assumptions are not true then some modifications of the model are required.

 As an example, there is one attribute that is clearly not constant over the inter-sales period,
and that is the age of the dwelling.  Allowing this X variable to change over time causes the
difference between (8) and (9) to become

(13)

although in some such specifications collinearity can become problematic (Coulson and McMillen,
2008).   What is always true of age might be sometimes be true of almost any other structural or
neighborhood characteristic, but with any such change, as long as it is observable (i.e. involves  the
X characteristics), similar modifications can be made.  The repeat sales price index can still be
characterized by the sequence of (s assuming that all of the )X terms are set to zero.  

Potential changes in the $ coefficients themselves are somewhat more difficult to handle. 
The most general case is when each $ coefficient has a different value in each time period. B. Case
and Quigley (1991) discuss the possibility that each $ has a distinct deterministic trend, but also the
more general model 

(also see Clapp and Giaccotto (1998)).  Subtracting the repeat sale at time period t-r we get the
individual change in appraisal:

  (14)

and for the sample as a whole,  the regression model becomes

(15)

where as before i indexes the time period, j indexes the attribute and, in a fashion similar to the
original Bailey, Muth and Nourse models: 



Several things can be noted.  First, each sequence of $ parameters may be interpreted as a repeat
sales index not for the unit, but for the X characteristic itself.  Second, a consequence of this is that
the one of the advantages of the repeat sales index is lost; a set of benchmark values X* must be
selected, in the manner of Table 1, in order to construct the price index sequence for housing itself,
but is a straightforward modification of the above methods.  Third, if temporal parameter variation
is suppressed, then this model reverts to the described in text  following equation (13). Finally, as
Case and Quigley (1991) and Clapp and Giaccotto (1997) note, it is straightforward to combine this
repeat sales model with data on one-time sales, since the $ parameters from a one time sale at time t
ought to be equal to the corresponding $s in (15), although the doubts about the comparability of
such samples expressed above may prevent this.
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TABLE 1
Palmquist (1983) estimates of hedonic price indexes for six US cities

ATTRIBUTE Atlanta Denver Houston Louisville Ok. City Seattle Value for
X*

Value of
X**

 Intercept -9337.32 4398.511 -12156.8 1116.21 2901.192 -9526.05 1 1

Lot Area (square
feet)

0.0813 0.1474 0.0998 0.0745 0.1423 0.6542 40000 25000

Improved Area
(square feet)

15.0576 12.7203 12.7237 8.4252 8.6116 17.921 1400 1000

Improved Area2 -0.0022 -0.0019 -0.0002 -0.0023 0.0007 -0.0032 1960000 1000000

Number of Baths 1821.32 1881.861 477.7357 3611.45 1169.399 2527.32 2 2

Year Built 134.4473 79.34 111.402 71.27 106.004 101.9034 70 70

Number of stalls in
Garage

1451.094 21989.28 1838.58 1602.43 1694.6060 1319.142 2 2

Number of stalls in
Carport

1198.081 601.4742 682.5717 999.5843 1097.116 483.6459 0 0

=1 if garaged is
detached

-1006.91 -820.9986 -739.4174 -409.3972 -1277.08 -479.62 0 0

=1 if wiring is
underground

710.0944 510.15 1239.945 2156.105 449.7995 672.2081 1 1

=1 if dishwasher 1710.118 984.5379 1153.738 2027.138 1028.8940 1006.522 1 1

=1 if garbage
disposal

292.5529 473.8454 783.4335 1214.163 866.3541 696.6563 1 1

=1 if central air
conditioning

1937.391 0 1998.0340 2113.566 1606.441 0 1 1

=1 if wall air
conditioning

604.6657 0 984.1632 642.5249 285.40880 0 0 0

=1 if ceiling fan 344.714 570.0075 -165.0138 977.5475 560.0915 300.8057 0 0

=1 if sold in 1976 -1114.5 -2432.459 -1758.73 -1179.69 -1616.08 -2207.6 0 0

=1 if““excellent
condition”

1007.502 1434.456 759.2975 384.2958 1084.787 1243.15 1 1

=1  i f  “ “ f a i r
condition””

-2227.37 -2095.13 -1352.85 -2538.34 -1042.07 -1626.36 0 0

=1  i f  “poor
condition

0 -4316.13 0 -3390.74 -8880.12 153.1606

=1 if brick or
stone exterior

622.333 979.6494 1568.272 2390.842 1241.053 3981.132 0 0

=1 if full basement 1852.194 2229.443 0
3219.733

0 3712.41 1 1

=1 if  part ial
basement

1108.292 2218..805 0 2201.489 0 2748.483 0 0

=1 if fireplace 1114.569 2118.643 2418.986 1604.151 2416.365 1334.085 1 1



=1 if swimming
pool

3274.725 0 0 0 3426.925 0 1 1

l e v e l  o f  a i r
pollution 

-45.47 -26.0403 -11.8616 -15987 -0.2232 -8.865 0 0

median age in
census tract

-58.1812 49.0941 119.2348 47.7201 2.8702 -108.976 36 36

median family
income in
census tract

0.0788 0.1655 -0.0044 0.0249 -0.0976 0.3854
25,000 25,000

% of workers in
tract with
blue-collar jobs

-52.1812 -15.0316
27.0144 -44.1273 -51.5020 -76.8352 45 45

% of houses in
tract with new
occupants (< 5 yrs)

-32.4515
-61.5007 -30.7873 5.9894 -2.7746 -30.8822

14 14

%  o f  t r a c t
population that is
non-white

-1516.5 -4465.67 -2455.11 -5561.16 -3412.13 -6155.91
0 0

%  o f  t r a c t
population over 24
that is HS graduate

1.2341
0.3271 0.4575 0.9166 0.2563 -0.3471

68 68

% of structures
with >1
person per room

35.9097
64.3941 80.8062 -16.2552 -39.3587 199.9203

0 0

number of work
destinations
per square mile in
tract

16.6915
13.9396 26.8967 3.7791 -7.0332 8.7971

0 0

Constant Quality
Price

$35,695.53 50235.08 35038.77 40020.18 41373.61 60748.87

Index (X*)
(Atlanta=100)

100.0 140.32 98.1 112.1 115.9 170.2

Index (X**)
Atlanta =100

100.00 145.86 93.27 123.86 114.02 144.31
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