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Abstract
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via existing mandated disclosures—can hedge investors against climate transition
risks.
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1. Introduction

As the world moves toward reduced carbon emissions, the development of new policies and

regulations, advancements in technologies, and changes in market preferences will impose risks

on some companies and offer opportunities to others. Several studies explore the former set

of firms, focusing on climate transition risk for those exhibiting high carbon emissions and

other pollutants.1 We build on these papers by examining the latter. Specifically, we focus on

climate solutions, defined as products and services that develop or deploy technologies in a

transition to a low-carbon economy. For companies engaged in climate solutions, transition

risks may present new business opportunities due to the rising demand for their products and

services. Consequently, the business opportunities for firms with significant exposure of their

product portfolio to climate solutions (hereafter “high-climate solution firms”) suggest that

these firms could act as a hedge against climate transition risk for investors (Pástor et al.,

2021, 2022). Accordingly, this paper assesses the market pricing and financial performance

implications of firms’ exposure to climate solutions.

Building on prior research deriving text-based measures using accounting data (e.g., Brown

& Tucker, 2011; Li, 2010; Loughran & Mcdonald, 2016; Lyle, Riedl, & Siano, 2023), we estimate

firms’ climate solutions using mandated accounting disclosures. Specifically, we apply large

language models (LLMs) to analyze the “Business Description” (i.e., Item 1) in U.S. publicly

listed firms’ 10-K filings (Lu, Serafeim, Xu, & Awada, 2024). This section is particularly

suitable for our analysis as it provides a legally mandated, detailed account of companies’

products and services, reducing the likelihood of misinformation (i.e., greenwashing) and

offering a standardized text for LLM analysis. To identify firms’ climate solution products and

services, this measure fine-tunes a Generative Pre-trained Transformer (GPT) model using

a labeled dataset to identify sentences related to climate solutions. This data is available

for 13 GICS industry groups with indicated exposure to climate solutions, where the model

demonstrates higher accuracy in identifying climate solutions (Lu et al., 2024). Applying this

process, we construct a variable, CS measure, defined as the ratio of climate solutions sentences

to the total number of sentences in Item 1. This measure proxies for a firm’s exposure to

climate solutions-related opportunities in its product and service offerings.2

1Research indicates that assets with greater exposure to climate change news (Huynh & Xia, 2021), higher
carbon emissions (Bolton & Kacperczyk, 2021, 2023), or increased toxic emissions (Hsu, Li, & Tsou, 2023)
tend to yield higher expected returns, reflecting a positive risk premium as investors demand additional
compensation for holding them.

2To illustrate, the average firm in our sample has a CS measure of 2.695, indicating 2.70% of sentences
in Item 1 are classified as related to climate solutions. Of note, the CS measure also exhibits predictable
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We predict that firms’ climate solutions may affect stock returns and firm performance,

as high-climate solution firms are better positioned to hedge against transition risks. In

particular, we expect the products and services of such firms to be in greater demand during

periods of heightened transition risk, allowing them to capitalize on new market opportunities

(Pástor et al., 2021, 2022). Traditional theories of intertemporal hedging motives suggest

that market participants pay more for firms with strong hedging potential (Campbell, 1993,

1996; Merton, 1973). Thus, we predict that high-climate solution firms exhibit higher stock

prices today, resulting in lower expected returns: we denote this as the “hedging hypothesis.”

Related, we expect such firms to exhibit stronger financial performance when transition risk

increases, consistent with elevated demand for climate solutions products and services. Our

broad empirical findings support both expectations: we document that firms with greater

exposure to climate solutions are associated with lower expected stock returns, and exhibit

stronger financial performance following periods of elevated transition risk. Combined, we

infer the evidence as consistent with the proposed hedging hypothesis.

Our empirical analyses proceed in five steps. First, we conduct portfolio level analyses

by sorting firms into quintile portfolios based on their CS measure. Importantly, we sort

firms relative to same industry peers, thus differentiating between firms with high versus

low climate solutions while controlling for industry-specific effects. We find that firms with

higher exposure to climate solutions (i.e., those with higher values of the CS measure) exhibit

relatively lower subsequent stock returns. Specifically, a high-minus-low portfolio strategy

reflecting a long (short) position in the quintile portfolio of the highest (lowest) CS measure

yields a significant average annual return of -5.37%. We also conduct time-series regression

analysis of the portfolios’ excess returns on common risk factors to estimate alphas. We

confirm that these risk factors cannot account for the negative cross-sectional return spread

observed across portfolios sorted based on CS measure.

Second, we conduct firm-level analysis, employing pooled panel regressions to examine the

cross-sectional relationship between individual stock returns and CS measure, while controlling

for a comprehensive set of variables to account for industry group effects and other known

return predictors. We find that CS measure consistently negatively predicts future stock

returns across various control variables specifications. These effects remain economically

significant: a one standard deviation increase in CS measure corresponds to lower future stock

returns of 2.82% per annum. We also conduct pooled panel regressions to investigate the

variation: for example, the average CS measure is 57% and 11% for Tesla and General Motors, respectively.
We detail the construction of this variable in Section 3.1.
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relationship between firms’ contemporaneous valuation ratios and CS measure. Our results

indicate that high-climate solution firms exhibit higher valuation ratios, consistent with the

market placing a valuation premium on these firms.

Third, we confirm the uniqueness of the proposed CS measure relative to other climate-

related metrics, including those derived from alternative disclosure channels. Of note, Sautner,

van Lent, Vilkov, and Zhang (2023a) derive a measure capturing climate opportunities as

discussed in earnings conference calls, proposing this as a proxy for market participants’

attention to a firm’s climate opportunities. We confirm that all main results are robust to

controlling for this latter climate opportunities exposure. Moreover, consistent with Sautner,

van Lent, Vilkov, and Zhang (2023b), we fail to find significant market returns associated

with their climate opportunities exposure measure, suggesting that our documented negative

CS measure-return relationship applies more to firms offering climate solutions through their

products and services (as captured by our measure) rather than those attracting market

attention for climate opportunities (as captured by theirs). Related, we confirm that our CS

measure differs from emissions-based metrics. Conceptually, climate solutions and emissions

need not be strongly correlated: for instance, battery production helps other firms reduce

emissions but it is not itself a high-emitting industry, especially if the battery is produced

with low carbon electricity. Empirically, we find our inferences are unchanged to controlling

for carbon footprint.

Fourth, after documenting a robust negative CS measure-return relationship, we examine

whether the lower expected returns of high-climate solution firms stem from their ability to

hedge against climate transition risks by examining two implications of the hedging hypothesis.

First, this hypothesis suggests that the hedging value of climate solutions should increase when

transition risk is higher. Accordingly, we analyze firms’ short-window stock price reactions to

five significant climate-related regulatory events capturing changes in transition risk. Results

indicate that high-climate solution firms exhibit significantly higher 5-day cumulative abnormal

returns (CAR) relative to low-climate solution firms to events designated as increasing demand

for climate solutions through tighter regulations or increased incentives (such as the signing of

the Paris Agreement), and lower CAR to decreased demand for climate solutions (captured in

anticipated relaxation in regulatory stringency with the election of President Trump). These

findings confirm that equity investors incorporate the expected benefits and costs associated

with political and regulatory changes conditional on firms’ engagement in climate solutions.

Fifth and related to the previous analysis, the hedging hypothesis suggests that the future
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profitability of high-climate solution firms should be higher when transition risk increases due

to greater demand for climate solutions. Accordingly, we examine how firms’ future profitability

is influenced by the interaction between CS measure and three measures of transition risk. The

first measure is the environmental and climate policy uncertainty index developed by Noailly,

Nowzohour, and van den Heuvel (2022), which captures time-series variation in transition risk

stemming from environmental regulatory uncertainty. The second measure, following Ardia,

Bluteau, Boudt, and Inghelbrecht (2023), captures time-series variation in unexpected media

climate change concerns, providing a more general indicator of transition risk. The third

measure, which varies in both the cross-section and times-series, assesses firms’ direct exposure

to climate-related shocks by combining the geographical distribution of firms’ operations

based on state-level sales with climate-related shocks at the state level. We conduct pooled

panel regressions of firms’ future profitability on CS measure and its interactions with each

of these three measures of transition risk. We test the joint hypothesis that (i) the linear

CS measure term enters negatively, suggesting that high-climate solution firms exhibit lower

future profitability when there is minimal transition risk, consistent with the costly investment

required to provide climate solutions, and (ii) the interaction between CS measure and each

measure of transition risk enters positively, indicating that the negative impact of CS measure

on future profitability is mitigated during periods of heightened transition risk. Consistent

with this joint hypothesis, the impact of CS measure on future profitability becomes less

negative (and sometimes even positive) when transition risk reaches sufficiently high levels, as

captured by each of the above three proxies.

Overall, we infer these results as consistent with the hedging hypothesis, since the expected

cash flows and actual performance of high-climate solution firms are dependent on the level

of transition risk. Of note, the hedging hypothesis posits that the future profitability of

high-climate solution firms will covary positively with transition risk, indicating higher future

profitability in states of the world characterized by elevated levels of transition risk.

We also assess two potential alternative explanations for our findings. First, the literature

on attention and return predictability suggests that the market often underreacts to various

types of value-relevant information, including industry news, demographic shifts, and upstream-

downstream relationships (Cohen & Frazzini, 2008; DellaVigna & Pollet, 2007; Hong, Torous,

& Valkanov, 2007). To the extent the market systematically underreacts to climate solutions

information, this would suggest a similar negative association with returns. However, this

latter prediction also suggests that the future profitability of high-climate solution firms should
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be unaffected by the level of transition risk. Thus, our empirical evidence regarding systematic

differences in future profitability conditional on transition risk appears inconsistent with this

“mispricing” notion.3 Second, investors’ preferences for so-called green assets may lead to

increased demand for high-climate solution firms to the extent their products and services

are perceived as environmentally friendly by investors. The theoretical literature suggests

that such preferences, which reflect non-pecuniary motives, can lead to the stock prices of

these firms trading at a premium (Baker, Bergstresser, Serafeim, & Wurgler, 2022; Fama &

French, 2007; Friedman & Heinle, 2016; Pástor et al., 2021; Pedersen, Fitzgibbons, & Pomorski,

2021; Zerbib, 2022). Related, norm-constrained investors often engage in exclusionary ethical

investing, leading to higher expected returns for brown firms due to reduced demand (Fernando,

Sharfman, & Uysal, 2017; Heinkel, Kraus, & Zechner, 2001; Hong & Kacperczyk, 2009; Luo

& Balvers, 2017). Thus, under this so-called “investor preference hypothesis,” high-climate

solution firms may reflect a price premium due to investor preferences for firms that provide

green products and services, again resulting in lower expected returns. However, we find no

evidence of either institutional investors or norm-contrained investors holding higher shares in

firms with higher climate solutions. Combined, these latter results suggest that the investor

preference hypothesis is unlikely to explain the negative CS measure-return relationship. We

further note that a potential explanation is that while there has been significant societal

pressure for institutional investors to avoid holding shares in high carbon emission firms, there

has been limited pressure on investors to hold shares of high-climate solutions firms, consistent

with negative screening being the most frequent ESG strategy (Amel-Zadeh & Serafeim, 2018).

We then conduct additional analyses. First, we demonstrate that the effectiveness of

climate solutions as a hedge against transition risk is even stronger when firms also have a

low carbon footprint, as the positive carbon premium may offset the negative return spread

associated with the hedging potential of climate solutions. Second, we conduct a topic

analysis on CS measure to assess the carbon abatement costs and potential of firms’ climate

solutions. We find that the hedging benefits are more pronounced for firms offering low-cost

climate solutions, suggesting that investors perceive these firms as better positioned to manage

transition risk effectively. Third, while the investor preference hypothesis predicts greater

institutional ownership in high-climate solution firms regardless of transition risk, the hedging

hypothesis suggests that a specific subgroup of investors—those with high hedging needs and
3We also examine analyst forecast errors by regressing them on the interaction between CS measure and

the measures of transition risk, and find no evidence that high-climate solution firms are overvalued during
periods of elevated transition risk.
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the ability to hedge—will invest more in high-climate solution firms when transition risk is

elevated. Consistent with this expectation, we find that only natural arbitrageurs, such as

mutual funds and independent investment advisors, tilt their portfolios toward high-climate

solution stocks in response to increased transition risk, indicating the active use of these stocks

as a hedge. Finally, we confirm the robustness of our main findings through several approaches:

using equal-weighted portfolio returns, conducting Fama-MacBeth regressions, controlling

for firm innovation, accounting for ratings of a firm’s greenness, and utilizing option-implied

expected returns.

Our findings contribute to three key literatures. First, we build upon the literature on

the informativeness of regulated disclosures in capital markets (Brown & Tucker, 2011; Li,

Lundholm, & Minnis, 2013). Smith (2023) develops a theoretical model in which climate

disclosure facilitates more efficient risk-sharing in financial markets by helping investors identify

stocks that effectively hedge climate risk. We provide empirical evidence supporting this

argument by showing that existing regulated filings already contain valuable information that

LLMs can extract to generate measurable variations relevant to climate risk hedging. Further,

while prior research raises concerns that 10-K filings have become increasingly boilerplate (Dyer,

Lang, & Stice-Lawrence, 2017) or predominantly focus on risk-related content (Campbell,

Chen, Dhaliwal, Lu, & Steele, 2014; Matsumura, Prakash, & Vera-Muñoz, 2024), we show

that these filings provide information on business opportunities that is distinct from existing

measures. For example, compared to textual analyses that primarily assess firms’ exposure to

climate risks (Berkman, Jona, & Soderstrom, 2024; Kölbel, Leippold, Rillaerts, & Wang, 2024;

Li, Shan, Tang, & Yao, 2024; Sautner et al., 2023a), our approach emphasizes climate-related

opportunities. Furthermore, relative to existing measures of climate opportunities (Leippold

& Yu, 2023; Sautner et al., 2023a), our measure—derived from firms’ 10-K Item 1 business

descriptions—is more likely to capture products and services already integrated into a firm’s

operations rather than prospective opportunities discussed in voluntary disclosures or under

development in patents.

Second, our work builds upon papers examining the impact of CSR reporting and regulation

(e.g., Christensen, Hail, & Leuz, 2021) by demonstrating that climate-related informational con-

tent can be extracted from already existing (and non-CSR specific) mandated firm disclosures.

That is, our findings suggest a complementary role for CSR and non-CSR disclosure channels

in the identification and decision-usefulness of such signals. Related, our study contributes to

the growing literature examining the pricing of assets in the context of climate transition risk.
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Recent work examines this pricing in equities (Bolton & Kacperczyk, 2021, 2023; Hsu et al.,

2023; Pástor et al., 2022; Sautner et al., 2023b), corporate bonds (Huynh & Xia, 2021; Seltzer,

Starks, & Zhu, 2022), bank loans (Delis, de Greiff, Iosifidi, & Ongena, 2024; Ivanov, Kruttli,

& Watugala, 2024; Kacperczyk & Peydró, 2022), and options (Ilhan, Sautner, & Vilkov, 2021).

Of note, these studies predominantly adopt a left-tail risk perspective, viewing transition risks

as challenges for firms with high carbon emissions, industrial pollution, stranded assets, or

poor environmental profiles. In contrast, we adopt a business opportunity (i.e., right-tail risk)

perspective, recognizing that firms engaged in climate solutions can benefit from transition

risks, as heightened climate concerns can drive increased demand for their goods and services

(Pástor et al., 2021).

Finally, our study contributes to the accounting literature on innovation and stock returns.

In particular, Glaeser and Lang (2024) call for research to examine how well existing disclosures

capture the existence and nature of green innovation. Earlier work finds that higher investments

in R&D are associated with higher stock returns (Chambers, Jennings, & Thompson, 2002;

Chan, Lakonishok, & Sougiannis, 2001; Lev & Sougiannis, 1996), with some attributing

these returns to compensation for different types of risks (Lev & Sougiannis, 1999; Lin &

Wang, 2016; Stoffman, Woeppel, & Yavuz, 2022; Tseng, 2022), while others argue they reflect

mispricing (Eberhart, Maxwell, & Siddique, 2004; Lev, Sarath, & Sougiannis, 2005). We

extend this literature in two ways. First, we show that climate solution firms, despite their

active engagement in innovative technologies, exhibit lower expected returns. This finding

contrasts with the conventional innovation premium, as high-climate solution firms can serve

as a hedge against transition risk for investors. Second, our findings provide direct evidence

that mandated reporting can provide useful signals relating to green innovation.

2. Literature review and conceptual underpinning

Empirical research provides support that climate-related risks influence expected returns. For

example, Faccini, Matin, and Skiadopoulos (2023) document that risks arising from the U.S.

climate-policy debate are priced in the U.S. stock market. Huynh and Xia (2021) demonstrate

that corporate bonds with heightened exposure to climate change news risk exhibit higher

expected returns, reflecting a positive risk premium. Bolton and Kacperczyk (2021, 2023)

find that firms with higher carbon emissions have higher returns, as investors demand a

carbon premium to compensate for potential regulatory risks. Hsu et al. (2023) document

a similar pollution premium for firms with toxic emissions. Additionally, Leippold and Yu

(2023) find that firms with more green patents earn a negative return premium and attract
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more institutional investor ownership.

Several studies document instances of mispricing related to climate change risks. For

example, Hong, Li, and Xu (2019) find that stocks with greater exposure to drought risk have

lower returns due to the market’s underreaction to climate risk. Similarly, research shows that

firms adversely affected by abnormal temperatures (Cuculiza, Kumar, Xin, & Zhang, 2024)

and those with poor ESG practices (Glossner, 2021) experience lower returns because the

market does not fully incorporate information about their poor future performance into stock

prices. There is also evidence that carbon risk may be mispriced, as indicated by the positive

abnormal returns generated by a long-short portfolio constructed from stocks with low versus

high carbon emissions (Garvey, Iyer, & Nash, 2018; In, Park, & Monk, 2019; Kim & Kim,

2020).

An established literature documents that investors are more inclined to hold socially

responsible firms due to social norms and preferences, which influence stock prices. For

example, Hong and Kacperczyk (2009) demonstrate that “sin” stocks have higher expected

returns due to lower demand from norm-constrained investors. More generally, ESG-sensitive

investors’ reluctance to invest in certain assets leads to higher expected returns for non-green

companies (Fernando et al., 2017; Heinkel et al., 2001; Luo & Balvers, 2017). Additionally,

research indicates that both retail and institutional investors’ demand for socially responsible

firms can increase prices and decrease the expected returns of these firms (Cao, Titman, Zhan,

& Zhang, 2023; Chava, 2014; Gibson, Krueger, & Mitali, 2021; Riedl & Smeets, 2017).

Although each of the three hypotheses—hedging, mispricing, and investor preference—

predicts that high-climate solution firms have lower expected stock returns, they offer different

testable implications for the economic mechanism driving the relationship. The testable

implications for the hedging hypothesis are derived from the equilibrium model developed by

Pástor et al. (2021). In this model, stocks whose cash flows correlate positively with climate

risk—i.e., performing well when there is an unexpected negative climate shock—serve as a

climate-risk hedge and thus have a lower expected return. Conversely, stocks whose cash flows

correlate negatively with climate risk—i.e., performing poorly when there is an unexpected

negative climate shock—have a higher expected return. Accordingly, we proxy for firms’ cash

flows by examining their profitability (e.g., gross margin, return on assets, and return on

sales), as the literature indicates that transition risk affects the profitability and operation of

firms (Hsu et al., 2023; Ramadorai & Zeni, 2024).

Applying this framework to the context of climate solutions, we expect high-climate solution
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firms’ cash flows to correlate positively with transition risk, given that their products and

services are in highest demand during periods of greater urgency for decarbonization. Our

prediction is related to research investigating the impact of carbon emissions on firm value.

For example, Ramelli, Wagner, Zeckhauser, and Ziegler (2021) demonstrate that the Trump’s

2016 election boosted carbon-intensive firms as it downshifted expectations regarding U.S.

policy toward climate change. Monasterolo and de Angelis (2020) observe a decrease in the

risk premia for low-carbon assets following the Paris Agreement. Thus, the hedging hypothesis

predicts that (i) high climate solution firms exhibit lower expected returns (reflecting a price

premium for their acting as a hedge against transition risk) and (ii) conditional on the level of

transition risk, the future profitability of high-climate solution firms will increase with higher

levels of transition risk.

In contrast, the mispricing hypothesis posits that investors systematically overvalue high-

climate solution firms relative to their fundamental value, suggesting the cash flows of these

firms should be unaffected by the level of transition risk. Thus, the mispricing hypothesis

predicts that high-climate solution firms will exhibit lower future profitability regardless

of the level of transition risk. Finally, the investor preference hypothesis does not reflect

expectations regarding future profitability but rather changes in investors’ holdings driven

by their preference for holding stocks of high-climate solution firms. To examine testable

implications of this hypothesis, we follow the existing literature and use institutional ownership

to measure investor demand (Bolton & Kacperczyk, 2021; Hong & Kacperczyk, 2009; Pedersen

et al., 2021). According to this hypothesis, we expect high-climate solution firms to be

associated with higher institutional ownership, especially among norm-constrained investors.

3. Data, sample, and variables

3.1. Climate solutions large language model

To measure firms’ focus on climate solution products and services, we use data that fine-tunes

a GPT model to detect climate solutions sentences in the “Business Description” (i.e., Item

1) section of 10-K filings from the Securities and Exchange Commission’s (SEC) EDGAR

database (Lu et al., 2024). Our sample period spans fiscal years 2005 to 2022. We start in 2005

to coincide with the more stable SEC disclosure requirement for firms regarding their most

significant risks in Item 1A. We retain 13 (out of 25) GICS industry groups that are central to

climate solutions; this both ensures materiality of climate solutions as part of the underlying

business model, and reflects where our model is more accurate in identifying climate solutions.
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The climate solutions GPT model is fine-tuned using a training dataset of 3,508 sentences,

each labeled as either a climate solutions sentence or not. These sentences are chosen from

10-K Item 1 sentences that are representative of each of the 13 industry groups, as well

as sentences that the model deems more difficult to classify through an active learning

approach.4 The labeling for climate solution sentences is based on Project Drawdown, which

contains a list of technologies that can reduce greenhouse gases in the atmosphere, and are

compiled by a network of scientists and researchers. GPT is well-suited for this measure since

separating climate solution sentences from other climate sentences requires more advanced

context recognition than other methods such as lexicon-based approaches, and the fine-tuned

GPT model is more capable of understanding contextual sentences.5 Our fine-tuned climate

solutions GPT model achieves an accuracy rate of 84.09% and an F1 score of 0.79, indicating

a high level of precision and recall in its predictions.6

The climate solutions GPT model to applied to all sentences in 10-K Item 1. To capture

the relative importance of climate solutions for a given firm-year, we create the variable CS

measure, defined as the number of climate solutions sentences divided by the total number of

sentences in the 10-K Item 1. We use this measure to proxy for a firm’s economic activities

relating to climate solution products and services. Previous research provides validation that

this measure correlates with other measures of climate opportunities, such as green patents

and green revenues, as well as with higher research and development investments required to

commercialize climate solutions (Lu et al., 2024). The Internet Appendix presents a related

extract on the LLM methodology section of Lu et al. (2024), which details the construction

and labeling of the climate solutions GPT model.

3.2. Financial and accounting data

We obtain stock return data from Center for Research in Security Prices (CRSP) and accounting

data from Compustat. To address backfilling bias, we require firms to be listed on Compustat
4In machine learning, active learning is a semi-supervised learning framework that selects the data points

the model learns from with the aim of optimizing learning efficiency and model performance with less labeled
data. We provide more details in the Internet Appendix.

5For example, “We produce electric vehicles” is considered a climate solutions sentence, but “We believe we
have a responsibility and opportunity to play a role in the global economic transition to net zero emissions” is
not. As a more challenging example, the sentence “Primary fleet EV competitors include Smith Electric, Azure
Dynamics, Enova, and EnVision Motor Company” is classified as a climate solutions sentence but “Electric
vehicle industry growth has accelerated in the past several years” is not. While both sentences refer to the
climate solution electric vehicles (EV), the former implies the focal firm produces EV and has EV competitors,
while the latter merely describes an industry trend without sufficient information to suggest the focal firm
produces EV.

6The F1 score is calculated as the harmonic mean of precision (the percentage of predicted positives that
are truly positive) and recall (the percentage of true positives that are predicted as positives).
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for two years before we include them in our sample (Hsu et al., 2023). Our sample consists

of firms with non-missing data for CS measure, stock returns, and whose domestic common

shares (SHRCD = 10 or 11) are traded on the NYSE, AMEX, or NASDAQ. Following the

literature, we exclude financial firms with four-digit standard industrial classification (SIC)

codes ranging from 6000 to 6999.

3.3. Descriptive statistics

Table 1 provides descriptive statistics for the 2005-2023 firm-year sample. Our analysis

includes control variables for firm fundamentals, including: the natural logarithm of market

capitalization (ME); the natural logarithm of book-to-market ratio (B/M ); investment rate

(I/K ); ratio of R&D to sales (R&D/Sales); return on assets (ROA); return on equity (ROE);

book leverage (Leverage); operating leverage (OL); tangibility (Tangibility); and Whited-Wu

index (WW ). Additionally, we include controls for stock characteristics, such as the standard

deviation of monthly stock returns over the past 12 months (Volatility) and the cumulative

12-month return of a stock, excluding the immediate past month (Momentum). Table A.1 of

Appendix A presents the variable definitions.

Panel A of Table 1 presents the summary statistics for all variables used in this study.

Our sample comprises 14,311 firm-year observations with non-missing values for CS measure.

CS measure exhibits a mean of 2.695: i.e, 2.70% of the total sentences in a firm’s 10-K Item

1 Business Description relate to climate solutions per our GPT model classification. The

standard deviation is 6.12, signifying considerable variation across firms. Panel B presents the

summary statistics of CS measure across 4-digit GICS industry groups: firms in “Utilities”,

“Automobiles & Components”, and “Capital Goods” exhibit higher CS measure; those in

“Transportation”, “Consumer Durables & Apparel”, and “Household & Personal Products”

exhibit lower CS measure. Panel C presents the correlation coefficients for all Panel A

variables. CS measure exhibits generally low correlations with other variables, except the

three profitability ratios of Gross margin (-0.18), ROS (-0.20), and ROA (-0.25).

4. Empirical results

This section investigates the empirical relationship between firms’ climate solutions and cross-

sectional stock returns by: (i) conducting portfolio-level analysis to examine if firms’ climate

solutions negatively predict stock returns; (ii) confirming if this relationship remains after

accounting for common risk factors through asset pricing tests; (iii) using firm-level analysis

to control for other firm characteristics that may predict stock returns in the cross-section;
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and (iv) performing valuation regressions to analyze if firms with more climate solutions trade

at a valuation premium.

4.1. Portfolio analysis

First, we create quintile portfolios based on firms’ CS measure overJuly 2006 to June 2023.7

Specifically, we rebalance portfolios at the end of every June in year t by assigning sample firms

into quintile groups within the corresponding 4-digit GICS industry group, based on their CS

measure as of the fiscal yearend in calendar year t−1. Critically, this provides industry-specific

breakpoints for quintile portfolios for each June, where the low (high) portfolio contains firms

with the lowest (highest) CS measure in each industry group. We present the time-series

average of the cross-sectional medians of firm characteristics for the five CS measure-sorted

portfolios in Internet Appendix Table IA.1. Firms in the low (high) portfolio exhibit a mean

CS measure of 0.42% (9.7%). After forming the five portfolios, we track their performance

over the subsequent twelve months (i.e., July of year t to June of year t + 1) by computing

value-weighted monthly returns.8 We then construct a high-minus-low portfolio, representing

a zero-cost trading strategy taking a long (short) position in the high-CS measure (low-CS

measure) portfolio.

Table 2 Panel A presents the average returns in excess of the risk-free rate in percentage,

t-statistics,9 standard deviations, and Sharpe ratios. The findings indicate that a firm’s CS

measure negatively predicts stock returns, with excess returns generally decreasing across the

portfolios from low to high. Specifically, the low, 2, 3, 4, and high portfolios yield excess

returns of 0.97%, 0.87%, 0.89%, 0.87%, and 0.52%, respectively. Notably, the high-minus-low

portfolio exhibits a monthly excess return of -0.45% (t-statistic = -2.06). The equivalent

annualized excess return is -5.37%, which is comparable in magnitude to the pollution premium

of 4.42% per Hsu et al. (2023). Furthermore, Sharpe ratios tend to decrease from the low

to high portfolio, with the magnitude of the annualized Sharpe ratio of the high-minus-low

portfolio (0.52 =
√

12 × 0.15) being comparable to that of the equity risk premium.

We then confirm the robustness of our observed variation in the average returns of the

CS measure-sorted portfolios to existing risk factors models. To adjust for risk exposure, we

perform time-series regressions of portfolios’ excess returns on risk factors to estimate each
7We only include firms with at least one non-zero CS measure during the sample period.
8Publicly traded companies in the U.S. are generally required by the SEC to file their 10-K reports within

90 days after the end of the fiscal year. The six-month minimum gap between the fiscal yearend and the return
tests ensures that the values of CS measure are known before they are used to explain returns.

9Standard errors are calculated using the Newey-West correction for 12 lags.
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portfolio’s risk-adjusted return (i.e., alphas). We use five sets of risk factors (Hsu et al. (2023)).

Panel B includes the market factor (MKT) based on the CAPM model; Panel C the Fama and

French (1996) three factors (MKT, the size factor SMB, and the value factor HML); Panel D

the Carhart (1997) four factors (MKT, SMB, HML, and the momentum factor UMD); Panel

E the Fama and French (2015) five factors (MKT, SMB, HML, the profitability factor RMW,

and the investment factor CMA); and Panel F the Hou, Xue, and Zhang (2015) q-factors

(MKT, SMB, the investment factor I/A, and the profitability factor ROE). We find that the

cross-sectional return spread across portfolios sorted on CS measure cannot be captured by

these risk factors as the alphas in the high-minus-low portfolio remain statistically significant.

In Figure 1, we illustrate the time-series of the cumulative abnormal returns from an initial

investment of one dollar based on the risk-adjusted returns of the high-minus-low portfolio

from Panel E of Table 2. Throughout most of the sample period, the high-minus-low portfolio

consistently displays lower risk-adjusted returns. In summary, the above results suggest that

the observed negative CS measure-return relationship cannot be ascribed to common risk

exposure.

4.2. Firm-level analysis

To ensure that our results do not hinge solely on portfolio returns, we next run pooled panel

regressions using individual stocks. This approach enables us to account for a comprehensive

set of firm characteristics that are known predictors of stock returns, and to explore whether

the negative CS measure-return relationship is influenced by other predictors at the firm level.

For each month from July of year t to June of year t + 1, we regress individual stocks’

monthly returns in excess of the risk-free rate on the CS measure from year t − 1 and various

control variables known by the end of June in year t. Following Hsu et al. (2023), we control for

log ME, log B/M, I/K, ROA, Leverage, Tangibility, WW, Volatility, and Momentum. Given that

climate solutions frequently involve innovative technologies and processes, firms with higher

R&D expenditures may be more involved in the development and implementation of climate

solutions. Thus, we also incorporate R&D to sales (R&D/Sales) to disentangle the effect of

climate solutions on stock returns from the broader impact of innovation activities (Chambers

et al., 2002; Chan et al., 2001). We use year-month fixed effects to capture cross-sectional

variation in returns, and industry fixed effects to account for the impact of CS measure on

individual stock returns relative to other peer firms within the same 4-digit GICS industry

group (Bolton & Kacperczyk, 2021; Pedersen et al., 2021). Standard errors are clustered at

the firm level. All independent variables are normalized to a zero mean and a one standard
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deviation after winsorization at the 1st and 99th percentiles to reduce the impact of outliers.

Table 3 presents the results. Column (1) includes only CS measure, which attains a

significantly negative coefficient of -0.235 (t-statistic = -3.79). This finding suggests that a

one standard deviation increase in CS measure corresponds to a decrease of 2.82% in the

annualized stock return.10 As the difference in the average CS measure between the low and

high portfolios from Section 4.1 reflects 1.52 standard deviations, the coefficient estimate

in column (1) implies an annual return spread of -4.29%, which aligns with the previous

high-minus-low portfolio effect of -5.37%.

Results remain robust in Column (2) (which controls for firm characteristics known to

predict stock returns in the cross-section), as well as Column (3) (which additionally controls

for stock characteristics that are also known predictors of stock returns (Hsu et al., 2023)).

Overall, these findings indicate that the negative CS measure-return relationship also holds at

the firm level, and cannot be explained by other known firm-level predictors of stock returns.11

4.3. Controlling for other climate-related measures

We next demonstrate that CS measure both differs from other examined climate-related

measures, and that our results are robust to controlling for these alternative measures.

Specifically, we show how CS measure (which captures companies with products and services

in climate solutions) differs from proxies based on voluntary disclosures reflecting investor

attention on potential opportunities (Sautner et al., 2023a) and from measures of climate risk

based on greenhouse gas emissions.

4.3.1. Controlling for climate change opportunity exposure

Sautner et al. (2023a) develop firm-level climate change exposure measures based on the

relative frequency with which bigrams related to climate change occur in earnings conference

call transcripts (CCExposure). The authors also construct similar exposure variables to

capture opportunities (CCExposureOpp), regulatory shocks (CCExposureReg), and physical

shocks (CCExposurePhy) related to climate change. Sautner et al. (2023a) describe their
10The magnitude of this effect is comparable to the carbon premium observed by Bolton and Kacperczyk

(2021), where they demonstrate that a one standard deviation increase in the level of scope 1 and scope 2
emissions leads to a 1.8% and 2.9% increase in annualized returns, respectively.

11We further explore whether the negative CS measure-return relationship varies across industry groups,
given the significant industry-level variation in firms’ CS measure previously observed in Panel B of Table 1.
Figure 2 plots the point estimates and corresponding 95% confidence intervals of the coefficients on CS measure
using the specification in column (3) of Table 3, estimated separately for each GICS industry group. While
the negative CS measure-return relationship persists in most industry groups, there are some exceptions.
The coefficients on CS measure are statistically insignificant for the ‘Transportation”, “Consumer Durables
& Apparel”, and “Household & Personal Products” industry groups, consistent with these three industries
exhibiting the lowest average CS measure.

14



measure as capturing “attention paid by earnings call participants to firms’ climate change

exposures”; in contrast, we argue that CS measure identifies firms with climate solutions in

their product portfolio as reflected in the 10-K business description. Consistent with this

distinction, a manual examination of firms with the largest gap between the two measures

reveals that firms with low CCExposureOpp but high CS measure are more likely to already be

offering climate solutions products and services. In contrast, firms with high CCExposureOpp

but low CS measure are discussing climate opportunities without necessarily having them

integrated into their business operations. Also supporting this notion, Lu et al. (2024) finds

that the CS measure is associated with higher revenue growth, but not CCExposureOpp.

To verify that our results are not driven by firms’ climate change exposure variables, we

perform double sorting on CS measure and CCExposure. Specifically, at the end of every

June in year t, we assign firms into bottom and top groups based on the median value of the

CCExposure measure in year t − 1 and into quintile groups based on CS measure in year t − 1,

both relative to 4-digit GICS industry peers. This double sorting results in ten portfolios (2

× 5). We track the performance of these ten portfolios from July of year t to June of year

t + 1. If firms’ climate change exposure is responsible for the negative CS measure-return

relationship, then we would expect the return spread to be concentrated within the bottom or

top groups. However, as shown in columns (1) to (6) of Table 4, the return spread on the

high-minus-low CS measure portfolio remains significantly negative for both the bottom and

top groups across all specifications presented in Panels A through F.

We also incorporate these variables as additional control variables in the pooled panel

regressions. Table 5 Panel A demonstrates that the coefficient on CS measure again remains

significantly negative, while none of the coefficients on Sautner et al.’s (2023a) climate change

exposure variables exhibit statistical significance. These findings are consistent with those of

Sautner et al. (2023b), who also report an insignificant unconditional risk premium associated

with their climate change exposure variables based on realized returns.

4.3.2. Controlling for carbon emissions

We next control for firms’ carbon emissions to address the potential concern that firms with a

high CS measure may have lower carbon emissions. Lu et al. (2024) suggest this scenario is

unlikely as there is a very low correlation between CS measure and greenhouse gas emissions.

Nonetheless, we perform double sorting on CS measure and the natural logarithm of the sum

of a firm’s scope 1 and 2 greenhouse gas emissions (log Scope 1 and 2 ) using data from Trucost.

Specifically, at the end of every June in year t, we assign firms into bottom and top groups
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based on the median value of the log Scope 1 and 2 in year t − 1 and into quintile groups based

on CS measure in year t − 1, both relative to industry peers. Table 4 columns (7) to (12) show

that the return spread on the high-minus-low CS measure portfolio is significantly negative in

both the bottom and top groups of carbon emissions. Thus, the negative CS measure-return

relationship is not concentrated within either emissions group.

Table 5 Panel B then incorporates measures of carbon emissions in the pooled panel

regressions. Columns (1) and (2) control for firms’ natural logarithm of scope 1 (log Scope 1 )

and scope 2 (log Scope 2 ) emissions, respectively; while columns (3) and (4) control for firms’

scope 1 (Scope 1 int) and scope 2 (Scope 2 int) carbon emission intensity, respectively.12 The

coefficients on log Scope 1 and log Scope 2 are both positive, although statistically significant

only for the latter, indicating the presence of a carbon risk premium. Consistent with Bolton

and Kacperczyk’s (2021), the carbon premium appears unrelated to emission intensity as the

coefficients on carbon emission intensity are insignificant. Importantly, across all four columns,

the coefficients on CS measure remain significantly negative, confirming its predictive power

beyond carbon emissions.

4.4. Valuation regressions

We now investigate the firm valuation implications of climate solutions by analyzing the

relation between contemporaneous valuation ratios and CS measure (Pedersen et al., 2021).

Similar to prior research (Hong & Kacperczyk, 2009), we consider three valuation ratios (all

in natural logarithm form): market-to-book ratio (log MB), price-to-earnings ratio (log PE),

and enterprise value to EBITDA ratio (log EM ).13 The first ratio reflects a balance sheet

perspective, while the latter two offer an income statement perspective.

We conduct pooled panel regressions of these valuation ratios on firms’ CS measure in the

same year.14 In addition to the control variables from the previous section, we introduce the

additional controls of a firm’s current and future three years’ ROE (ROE, F1ROE, F2ROE,

F3ROE) as per Hong and Kacperczyk (2009). Our baseline specification uses industry fixed

effects and year fixed effects, with standard errors clustered at the firm level. However, given

that industry-specific, time-varying competition, business cycles, or technological development

can influence firm profits (and hence valuations) within each industry, we alternatively also
12Following Bolton and Kacperczyk (2021), we winsorize carbon emission intensity at the 2.5% level.
13The enterprise value of a firm represents the total value of debt and equity. Since EBITDA reflects profits

to both debtholders and equityholders, the enterprise value to EBITDA ratio remains unaffected by changes in
capital structure.

14Observations are dropped if the denominator of the valuation ratio is negative.
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employ industry × year fixed effects, with standard errors clustered at the industry × year

level to accommodate within-industry-year variation.

Table 6 presents the results. Across all specifications, firms with more climate solutions

exhibit higher valuation ratios across all three measures. The magnitude of the valuation

effects are also economically sizable. For example, in column (1), the coefficient on CS measure

is 0.051, implying that a one standard deviation increase in a firm’s CS measure corresponds

to a 5% increase in its market-to-book ratio relative to industry peers. These findings show

that firms with more climate solutions currently trade at a valuation premium, consistent

with their observed negative future stock returns.

5. Economic mechanisms

The results thus far indicate that high-climate solution firms experience lower future stock

returns and exhibit higher current market valuations. We now explore the potential mechanisms

underlying these findings. Our main hypothesis is that high-climate solution firms represent

a better hedge against climate transition risks. To provide evidence in support of the

hedging hypothesis, we first examine how firms’ stock prices react to salient climate-related

regulatory events. Then, we analyze the relationship between firms’ climate solutions and

future profitability, conditional on environmental regulatory uncertainty, unexpected climate

change concerns, and firm-level exposure to climate-related shocks.

5.1. Climate-related regulatory shocks

We investigate whether the CS measure-return relationship is driven by climate transition

risk by examining the stock price reactions to major climate regulatory events. We predict

that market valuations of firms with more climate solutions stand to benefit from events likely

to increase demand for climate solutions (Pástor et al., 2021), and conversely be adversely

affected by shocks that diminish demand for climate solutions through relaxed regulations.

Our analysis consists of five events posited as affecting demand for climate solutions. First,

we consider the Massachusetts v. EPA Supreme Court case, decided on April 2, 2007. In this

case, the EPA was mandated by Congress to regulate greenhouse gas emissions from motor

vehicles; this signaled a tightening of environmental regulations (Sugar, 2007), and led to the

EPA establishing emission standards for vehicles. The second event is the announcement of

the Paris Agreement on December 12, 2015. This landmark event increased the likelihood of

regulatory actions aimed at limiting carbon emissions and significantly elevated the importance

of transition risks (Bolton & Kacperczyk, 2021, 2023; Monasterolo & de Angelis, 2020). The
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third event is Donald Trump’s unexpected election victory on November 8, 2016. This event

signaled a probable relaxation of environmental regulations, reflecting his stated pledges to

dismantle climate regulations and withdraw from the Paris Agreement (Ramelli et al., 2021).

The fourth event is the Congressional confirmation of President Biden’s election results on

December 14, 2020. This event signified a significant reversal in expectations regarding U.S.

climate policy following the Trump administration, as Biden proposed to revoke several of

his predecessor’s executive orders and identified climate change as one of his top priorities

(Pham, Hao, Truong, & Trinh, 2023). Lastly, we examine the announcement of the Inflation

Reduction Act on July 27, 2022. This legislation benefits firms engaged in climate solutions

by allocating substantial funds for the development of climate solutions, intended to expedite

emission reductions in the U.S.

We examine shareholder reactions to the aforementioned events using a short-run event

study methodology (MacKinlay, 1997). We estimate daily cumulative abnormal returns

(CARs) based on the market model (using the CRSP value-weighted index) over a 5-day

window from the event date, which we refer to as a (0, +5) window.15 Panels A to E of Table 7

present the mean CARs around each event for stocks sorted into quintile portfolios based

on CS measure relative to their 4-digit GICS industry group peers. The CARs of the CS

measure-sorted portfolios exhibit a predominantly monotonic increasing pattern from the low

to high portfolios, and consistently significant positive high-minus-low portfolio CARs, for

regulatory events expected to be advantageous for firms with more climate solutions (Panels

A, B, D, and E). Conversely, for the event likely to signify negative news for high-climate

solution firms (Panel C), the CAR of the high-minus-low portfolio is significantly negative.

The impact of these regulatory shocks on shareholder wealth is also economically substantial.

To illustrate, consider the Trump election event: with an average market capitalization of $6.4

billion for sample firms, the average difference in CARs between the high and low portfolios

of -2.145% implies an estimated loss of approximately $137 million over the 5-day window.

Conversely, the subsequent Biden election event translates to an estimated gain of around

$342 million over the event window.16

In Panel F of Table 7, we conduct cross-sectional regressions of CARs on CS measure,

allowing us to control for various firm and stock characteristics as well as industry fixed
15To estimate the benchmark model parameters for each firm-event date pair, we use 250 trading days of

return data, with the window ending 20 days before the event date. We require a minimum of 120 non-missing
observations within the estimation window. To mitigate the impact of outliers, we apply winsorization to all
CARs at the 1st and 99th percentiles.

16The average market capitalization of sample firms used in the Biden election event is $10 billion.
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effects. We obtain qualitatively similar results: firms with more climate solutions outperform

(underperform) their industry peers in response to regulatory shocks signaling an increase

(decrease) in the stringency of climate regulations. These results are consistent with the notion

that high (low)-climate solution firms enjoy an expected profitability advantage (disadvantage)

when regulations become more (less) stringent, reflected in positive (negative) stock price

reactions. Importantly, these findings provide evidence that the observed CS measure-return

relationship is associated with climate transition risk.

5.2. Future profitability

Given the observed stock price reactions to various regulatory events, we now investigate the

impact of firms’ climate solutions on future profitability, conditional on several measures of

transition risk. We consider three profitability measures following prior literature (Hsu et al.,

2023; Novy-Marx, 2013). First, gross margin (Gross margin), defined as revenue minus cost

of goods sold over revenues, which quantifies how much each dollar of revenues goes to the

firm after accounting for the cost of goods sold. Second, return on sales (ROS), defined as net

income scaled by sales, which measures profitability after considering all expenses incurred

in generating sales, such as operating expenses. Third, return on assets (ROA), defined as

operating income scaled by total assets, which evaluates how efficiently a company utilizes its

assets to generate profits.

5.2.1. Future profitability and environmental regulatory uncertainty

We hypothesize that periods characterized by high regulatory uncertainty trigger increased

awareness of climate transition risks and heightened consumer concerns regarding climate

issues, which prompts greater demand for goods and services offered by climate solution

providers (Pástor et al., 2021, 2022). Thus, we anticipate that high-climate solution firms will

experience positive cash flow shocks during periods of high regulatory uncertainty, resulting in

higher future profitability in such states of the world.

We measure environmental regulatory uncertainty using the environmental and climate

policy uncertainty (EnvPU) index developed by Noailly et al. (2022). This index, which is

available from 2005 to 2019, is constructed from news articles extracted from ten leading

U.S. newspapers and represents the share of environmental policy uncertainty articles over all

environmental and climate policy articles in a given month. An increase in the index indicates

a rise in the uncertainty surrounding environmental and climate policy. Thus, the EnvPU

index captures the volatility (i.e., second moment) of environmental policy news rather than
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the level (i.e., first moment). Importantly, the EnvPU index is forward-looking, focusing

solely on articles pertaining to changes in current and future environmental and climate policy

uncertainty, while excluding those related to resolved or past uncertainties. Since our analysis

is conducted at the yearly level, we aggregate the monthly index by computing the natural

logarithm of the mean of the 12-month moving average of the EnvPU index for each year (log

EnvPU ). The time-series of log EnvPU is plotted in Internet Appendix Figure IA.1.

To examine whether the future profitability of high-climate solution firms increases more

during periods of greater regulatory uncertainty, we conduct the following pooled panel

regression following Hsu et al. (2023):

Profiti,t+1→t+10 = β0 + β1CS measurei,t + β2CS measurei,t × log EnvPU t

+ β3Xi,t + Fixed effects + εi,t,
(1)

where the outcome variables are future profitability, measured as the moving-average from

year t + 1 to t + 10 of gross margin (Gross margini,t+1→t+10), return on sales (ROSi,t+1→t+10),

and return on assets (ROAi,t+1→t+10).17 CS measurei,t is firm i’s climate solutions as of year

t. The vector Xi,t contains baseline control variables as well as the values of the profitability

measures in year t (Gross margin, ROS, and ROA) and their changes from year t − 1 (∆Gross

margin, ∆ROS, and ∆ROA). We employ either industry fixed effects and year fixed effects with

standard errors clustered at the firm level, or industry × year fixed effects with standard errors

clustered at the industry × year level, following Hsu et al. (2023). We interact CS measurei,t

and log EnvPU t to examine the prediction that high-climate solution firms are more likely to

benefit from increased environmental regulatory uncertainty.18

Table 8 presents the results. We find that the relation between firms’ climate solutions

and future profitability is contingent upon the state of the world determined by the degree of

regulatory uncertainty. For each profitability measure, the coefficient estimate on CS measure is

significantly negative, indicating that during periods of low regulatory uncertainty, high-climate

solution firms experience reduced future cash flows. In untabulated analysis, we find that the

CS measure is positively associated with both Selling, General, and Administrative expenses

(SG&A) and Cost of Goods Sold (COGS), consistent with the additional operational and

investment costs required to deliver climate solutions. In contrast, the estimated coefficient on

the interaction term is significantly positive, indicating that during periods of high regulatory
17We calculate the moving average for up to 10 years ahead. If a firm has less than 10 years of data available,

we calculate the moving average using the available uninterrupted stream of future years.
18There is no main effect for log EnvPU because it is absorbed by the year fixed effects.
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uncertainty, the reduced cash flows of high-climate solution firms are offset, leading to improved

future profitability.

To illustrate the economic magnitude of the non-linear effects of climate solutions on future

profitability, we plot the marginal effects of CS measure on future profitability conditional on

sample values of log EnvPU in Figure 3. The solid line represents the point estimates, while the

dashed lines indicate the 95% confidence intervals. We divide the sample into quartiles based

on log EnvPU, denoted as Q1, Q2, and Q3. Across all panels, we find that the marginal effect

of climate solutions on future profitability increases with the level of regulatory uncertainty.

Moreover, among the top quartile of regulatory uncertainty, we observe some evidence of a

reversal in the sign of the marginal effect from negative to positive. This finding suggests that

the impact of climate solutions on future profitability becomes less negative, and sometimes

even positive, when regulatory uncertainty reaches sufficiently high levels.

5.2.2. Future profitability and unexpected climate change concerns

We now extend our analysis beyond environmental regulatory uncertainty to encompass shocks

to climate change concerns, which serve as a broader indicator of transition risk. An unexpected

increase in climate change concerns is likely to shift consumer preferences toward climate

solution products and services, thereby boosting the net cash flows of high-climate solution

firms and ultimately leading to greater future profitability for these firms (Ardia et al., 2023;

Pástor et al., 2021).

We quantify climate change concerns using the Media Climate Change Concerns (MCCC)

index developed by Ardia et al. (2023), which extracts data from news articles about climate

change from major U.S. newspapers. The latter paper assigns each article a “concerns score”

based on the levels of negativity and risk discussed. Thus, the MCCC index is a daily measure

that tracks changes in climate change concerns by aggregating these article-level scores while

adjusting for heterogeneity across newspapers. In our analysis, we use the monthly MCCC

index to facilitate aggregation to the yearly level.

To differentiate between expected and unexpected shifts in climate change concerns that

may influence preferences for climate solution products and services, we follow Ardia et al.

(2023) and use the prediction error of an AR(1) model calibrated on the MCCC index as a

proxy for unexpected changes. Specifically, we estimate the following model:

MCCCt = µ + ρMCCCt−1 + γXt−1 + εi,t, (2)
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where MCCCt is the MCCC index in month t and Xt−1 denotes a vector of control variables

used to mitigate the potential impact of various confounding factors on the MCCC index.

This vector includes financial-market, energy-related, and macroeconomic variables as detailed

in Ardia et al. (2023).19 To calculate the prediction error in month t, we estimate the above

AR(1) model using a rolling window spanning the previous 60 months from January 2008

to September 2022, and define the prediction error as the actual realization of the MCCC

index in month t minus the AR(1) model’s forecast.20 The estimation results are presented

in Internet Appendix Table IA.2. Following Ardia et al. (2023), we refer to the prediction

errors as unexpected media climate change concerns (UMC ). We aggregate UMC to the yearly

level by taking the mean of the 12-month moving-average of the unexpected climate change

concerns in year t.

We estimate the following pooled panel regression to assess the relationship between climate

solutions and future profitability following an unexpected shock to climate change concerns:

Profiti,t+1→t+10 = β0 + β1CS measurei,t + β2CS measurei,t × UMC t

+ β3Xi,t + Fixed effects + εi,t,
(3)

where the specification is the same as in Equation (1). We interact CS measurei,t and UMC t

to examine the prediction that high-climate solution firms are more likely to benefit from

unexpected increases in climate change concerns.21

Table 9 presents the results. Columns (1), (4), and (7) show that during periods of low

unexpected climate change concerns, high-climate solution firms experience a decline in future

profitability, likely due to reduced demand for their products and services. However, as

unexpected climate change concerns increase, the future profitability of high-climate solution

firms improves. In the remaining columns, we utilize the UMC derived from the topic model of

Ardia et al. (2023), focusing on two transition risk themes: “Business Impact” (UMC BI) and

“Societal Debate” (UMC SD).22 The coefficients on the interaction term using these thematic
19The control variables include the term spread factor (TERM ) and default spread factor (DFLT ) of Fung

and Hsieh (2004), the economic policy uncertainty index (EPU ) of Baker, Bloom, and Davis (2016), the CBOE
volatility index (VIX), the crude oil return (WTI ), the propane return (PROP), the natural gas return (NG),
the excess market return (MKT ), the small-minus-big factor (SMB) and the high-minus-low factor (HML) of
Fama and French (1996), the robust-minus-weak factor (RMW ) and the conservative-minus-aggressive factor
(CMA) of Fama and French (2015), and the momentum factor (MOM ) of Carhart (1997).

20The data for the MCCC index begins in January 2003. However, due to the 60-month rolling window, our
sample can only start from January 2008 onwards.

21There is no main effect for UMC because it is absorbed by the year fixed effects.
22The Business Impact theme encompasses topics surrounding climate summits, agreements/actions, and

climate-related legislation/regulations. The Societal Debate theme involves topics such as political campaigns,
social events, and controversies.
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UMC measures are all significantly positive, indicating that high-climate solution firms are less

adversely affected by unexpected climate change concerns related to transition risk. Figure 4

plots the marginal effect of CS measure on future profitability across sample values of UMC,

revealing that the marginal effect increases with unexpected climate change concerns. Overall,

the evidence in this section suggests that high-climate solution firms possess a better ability

to hedge against transition risk driven by unexpected shifts in climate change concerns.

5.2.3. Future profitability and firm-level exposure to climate-related shocks

So far, we have focused on changes in transition risk using solely time series variation in

climate-related shocks. Now, we examine a firm’s direct exposure to such shocks by combining

the geographical distribution of its operations with climate-related shocks that vary at the

state level. Specifically, we use location-related business data from Infogroup to determine

the sales volume of each firm in every state.23 Then, we compute a weighted average of four

different measures of state-level climate-related shocks, where each state’s measure is weighted

by the firm’s share of sales volume in that state as follows:

Sales (Exposure)i,t =
∑

s Salesi,s,t × Exposures,t∑
s Salesi,s,t

, (4)

where Salesi,s,t is firm i’s sales in state s in year t and Exposures,t denotes one of four measures

of climate-related shocks in state s in year t discussed below. Thus, Sales (Exposure)i,t

represents firm i’s exposure to climate-related shocks in year t based on state-level sales. This

variable captures variation in exposure to climate-related shocks not only in the time series

but also across different firms in the cross-section.

We explore four measures of climate-related shocks that vary across states. First, we use

the staggered adoption of state-led climate plans.24 As these plans encompass both mitigation

and adaptation strategies, and transition risk predominantly stems from mitigation-related

actions rather than adaptation, we solely focus on the subset of mitigation plans enacted by

states.25 Although these plans differ in their scopes and strategies from state to state, they
23Infogroup aggregates data from diverse sources including telephone white page directories, utility connec-

tions, real estate property data, credit card billing statements, and public records.
24Data is obtained from the Georgetown Climate Center.
25We manually review each plan to determine whether it is an adaptation or mitigation plan by analyzing

its details. For instance, California EO B-30-15 outlines a statewide greenhouse gas emission reduction target
aiming to decrease emissions to 40 percent below 1990 levels by 2030, with the ultimate goal of achieving an
80 percent reduction below 1990 levels by 2050. This is categorized as a mitigation plan because it focuses on
reducing the emission of greenhouse gases that contribute to climate change. In contrast, Florida Senate Bill
(S.B.) 1954 aims to assess flooding risks associated with increased precipitation, extreme weather events, and
sea-level rise, and to initiate a coordinated statewide effort to adapt to these risks. As this plan primarily
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all reflect commitments to mitigating climate risks. The implementation of these mitigation

plans increases the likelihood of new climate-related regulations within the state, presenting

new opportunities for high-climate solution firms that primarily operate within these states.

To account for the cumulative impact of multiple plans implemented over time, we define

Exposures,t as the number of plans finalized in state s as of year t (SCAPs,t).

Second, we use three measures derived from the Yale Program on Climate Change Com-

munication (YPCCC) survey, which assesses public opinion regarding climate change across

states (Howe, Mildenberger, Marlon, & Leiserowitz, 2015). Public opinion plays a critical role

in influencing policy decisions and consumer behavior related to climate change mitigation

efforts. We focus on three specific questions aimed at understanding consumer preferences

in response to climate change. Specifically, we define Exposures,t as the percentage of the

adult population in a given state s during year t who support regulating CO2 as a pollutant

(YPCCC Regulates,t), think global warming is happening (YPCCC Happenings,t), or are wor-

ried about global warming (YPCCC Worrieds,t). These data are available from 2008 to 2022.

We anticipate that states with a higher percentage of adults holding these views will offer

increased business opportunities for high-climate solution firms, given the expected rise in

consumer demand for their goods and services and citizen support for climate policies.

To examine the relationship between climate solutions and future profitability conditional

on firm-level exposure to climate-related shocks, we estimate the following pooled panel

regression:

Profiti,t+1→t+10 = β0 + β1CS measurei,t + β2Sales (Exposure)i,t

+ β3CS measurei,t × Sales (Exposure)i,t + β4Xi,t + Fixed effects + εi,t,
(5)

where the specification is the same as in Equation (1).26

Table 10 presents the results. Across all three panels, we observe a significantly negative

coefficient on CS measure, and a significantly positive coefficient on the interaction between CS

measure and each of the four measures of firm-level exposure to climate-related shocks. This

result suggests that high-climate solution firms tend to experience lower future profitability if

their sales are in regions with fewer climate-related shocks. However, an increase in sales in

areas with more climate-related shocks leads to improved future profitability. The economic

magnitude of this relationship is also sizable. For example, in column (2) of Panel C, if Sales

addresses adapting to potential sea-level rise, it falls into the category of adaptation plans and is therefore
excluded from our consideration.

26There is now a main effect for Sales (Exposure) because it is not subsumed by year fixed effects.
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(YPCCC Regulate) increases from the 25th to the 75th percentile, then the marginal effect

of CS measure on the average return on assets over the next 10 years increases by 0.06%,

representing a 1.8% increase relative to the sample mean.27 Overall, the results in this section,

which directly link regions with climate-related shocks to where firms make sales and future

profitability, suggest that high-climate solution firms hedge against transition risk.

5.3. Mispricing

The evidence presented so far suggests that the documented negative CS measure-return

relationship appears consistent with high-climate solution firms having a better capacity

to hedge against transition risk, rather than investors mispricing these firms. Specifically,

mispricing would imply that high-climate solution firms should consistently exhibit lower

future profitability independent of the level of transition risk, resulting in lower subsequent

stock returns due to systematic overvaluation relative to their fundamental value. However,

the profitability regression results in the previous sections reveal that (1) the linear CS measure

term enters negatively and (2) the interaction between CS measure and each measure of

transition risk—environmental regulatory uncertainty, unexpected climate change concerns,

and firm-level exposure to climate-related shocks—enters positively. Thus, the fact that the

relationship between firms’ climate solutions and future profitability is conditional on the level

of transition risk suggests that the market places a valuation premium on climate solutions

because they serve as a hedge against transition risk, rather than due to mispricing.

To further rule out the mispricing hypothesis, we examine whether investors overvalue

high-CS measure firms when transition risk is high. Since investor expectations are not directly

observable, we use analysts’ earnings forecasts as a proxy for informed market participants’

views. Specifically, we examine analyst forecast errors by estimating the following pooled

regression:

Forecast error i,t+1 = β0 + β1CS measurei,t + β2Transition riski,t

+ β3CS measurei,t × Transition riski,t + β4Xi,t + Fixed effects + εi,t,
(6)

where Forecast error i,t+1 is the one-year analyst earnings forecast error of firm i in fiscal year

t + 1, CS measurei,t is measured at the end of fiscal year t, Transition riski,t is one of the

transition risk measures used previously, and Xi,t is a vector of control variables. The one-year
27The 25th and 75th percentile of the normalized variable Sales (YPCCC Regulate) are 0.15 and 0.43,

respectively. Thus, the coefficient of 0.002 implies an increase of 0.002 × (0.43 − 0.15) = 0.06%, which is
approximately 0.0006/0.032 = 1.8% of the sample mean of the outcome variable.
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analyst earnings forecast error is calculated as the difference between the actual earnings per

share for a given fiscal year and the median analyst consensus forecast, scaled by the stock

price at the end of the fiscal year.28 The consensus forecast is taken from the month following

the firm’s 10-K filing, ensuring that information on the CS measure is available to analysts

before they make their estimates.

The results are presented in Internet Appendix Table IA.3. If analysts overvalue high-CS

measure firms during periods of elevated transition risk, we would expect to observe systematic

negative forecast errors in these periods. However, the coefficients on the interaction term

CS measure × Transition risk are statistically insignificant across all measures of transition

risk, suggesting that mispricing is unlikely to explain our results.

5.4. Investor preferences

In this section, we investigate whether the negative CS measure-return relationship can be

attributed to investor preferences for firms offering climate solutions. Pedersen et al. (2021)

demonstrate that stronger investor demand for stocks with superior environmental performance

leads to higher contemporaneous prices and lower future returns. If investors’ preferences for

stocks with better environmental performance extend to a preference for firms offering climate

solutions, this may explain the lower returns observed in high-climate solution firms, even in

the absence of explicit hedging against transition risks.

We examine this hypothesis using institutional ownership data from Thomson Reuters

Institutional Holdings (specifically, form 13F data). Formally, we estimate the following pooled

panel regression at the firm-investor-quarter level:

IOj,i,t+1→t+4 = β0 + β1CS measurei,t + β2Xi,t + β3Yj,t + Fixed effects + εi,t, (7)

where IOj,i,t represents the fraction of shares of firm i held by investor j in quarter t (expressed

as a percentage). Following Pedersen et al. (2021), we use the moving-average from quarter

t + 1 to t + 4 of IO as the outcome variable so that CS measure is known before observing

institutional holdings. Xi,t includes baseline control variables, while Yj,t includes controls for

institutional investors, such as portfolio size (measured by the market value of the institutional

investor’s portfolio) and portfolio concentration (measured by the Herfindahl-Hirschman index

computed using portfolio weights). We incorporate institutional investor, firm, and year-

quarter fixed effects, with standard errors clustered at the firm level. The coefficient on CS
28We remove all observations that have a forecast error of larger than 10% of the stock price.

26



measure signifies the extent of institutional investors’ demand for firms with more climate

solutions.

In column (1) of Table 11, we present the results using the sample of all institutional

investors. The coefficient on CS measure is insignificant, suggesting that institutional investors

do not alter their portfolio holdings based on firms’ climate solutions. However, pooling all

institutional investors may obscure potential effects on institutional ownership, as different

investors may have different preferences. For instance, norm-constrained institutions such as

insurance companies or pension funds are more susceptible to public pressure and tend to

avoid poor sustainability firms, whereas mutual funds and hedge funds often act as natural

arbitrageurs (Bolton & Kacperczyk, 2021; Hong & Kacperczyk, 2009). In column (2), we

focus on the subsample of institutions classified as mutual funds or independent investment

advisors, while column (3) uses the subsample of institutions categorized as banks, insurance

companies, or others, including pension plans, endowments, and employee-ownership plans.

Across both subsamples, we fail to document significance on CS measure. Overall, the absence

of increased investor demand for firms offering climate solutions—despite the high power of

the regression, reflected in the large number of observations and high explanatory power—is

inconsistent with the investor preference hypothesis providing a primary explanation for the

negative CS measure-return relationship.

6. Additional analyses

6.1. Interaction between climate solutions and carbon emissions

In this section, we investigate whether the hedging effectiveness of climate solutions depends on

firms’ carbon emissions. This analysis is motivated by our findings for the “Energy” industry

in Figure 2, where we do not observe a significant negative relationship between CS measure

and returns, despite this industry’s relatively high average CS measure of 1.725 (Panel B,

Table 1). One possible explanation is that many firms classified in this industry group are oil

and gas companies that emit significant amounts of carbon. On the one hand, these firms are

often key innovators in the green patent landscape (Cohen, Gurun, & Nguyen, 2020), which

explains their engagement in climate solutions. On the other hand, their substantial carbon

emissions lead to a carbon premium, as investors demand compensation for exposure to carbon

emission risk (Bolton & Kacperczyk, 2021). Consequently, while such firms may benefit from

increased demand for certain products and services due to transition risk, they may also

incur costs due to their carbon footprint (Bolton & Kacperczyk, 2021, 2023). Accordingly, we
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hypothesize that the hedging effectiveness of climate solutions is more pronounced for firms

with lower carbon emissions (and thus, having lower carbon premiums).29

To formally investigate the interaction effect between climate solutions and carbon emissions,

we conduct pooled panel regressions and incorporate measures of carbon emissions and their

interactions with CS measure. Table 12 presents the results. With the exception of column (2),

the coefficients on the interaction terms are significantly positive, while those on the linear CS

measure term are always significantly negative. These findings suggest that for firms with high

engagement in climate solutions and minimal carbon footprint, the hedging effectiveness of

climate solutions is maximized. However, as the firm’s carbon emissions increase, the positive

carbon premium offsets the hedging effectiveness of climate solutions.

6.2. Topic analysis: Carbon abatement costs and potential

A firm’s climate solutions can differ in terms of carbon abatement costs and potential, depending

on the technology employed, which may affect the firm’s ability to hedge transition risks.

To explore this, we conduct a topic analysis of the firm’s climate solutions (Lu et al., 2024).

For each sentence related to climate solutions in 10-K Item 1, the topic analysis uses the

fine-tuned GPT model to assign the sentence to one of 88 topics based on technologies from

Project Drawdown. Each topic is then scaled by the total number of sentences in 10-K Item 1.

We decompose CS measure into high and low categories based on two dimensions: carbon

abatement costs and abatement potential. Specifically, CS measure (High abatement cost)

(CS measure (Low abatement cost)) is the sum of climate solution topics where the net initial

cost to implement the climate solution is classified as high (low) according to the Project

Drawdown 2020 report. Similarly, CS measure (High abatement potential) (CS measure (Low

abatement potential)) is the sum of climate solution topics where the abatement potential of

the climate solution is classified as high (low) according to the Project Drawdown 2020 report.

Lastly, CS measure (High cost per potential) (CS measure (Low cost per potential)) is the sum

of climate solution topics where the net initial implementation cost per abatement potential of

the climate solution is classified as high (low) according to the Project Drawdown 2020 report.

We then run similar pooled panel regressions as in Table 3, but using the decomposed

CS measure categories. In column (1) of Internet Appendix Table IA.4, the coefficient
29Preliminary evidence supporting this hypothesis appears in the double sorting analysis in Table 4. Although

the return spread on the high-minus-low CS measure portfolio is negative and statistically significant in both
the bottom and top carbon emission groups, the spread is consistently larger in magnitude for firms in the
bottom carbon emissions group. This pattern suggests that while climate solutions hedge against transition
risk across all levels of carbon emissions, the hedging effectiveness is stronger for firms with lower carbon
footprints.
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on CS measure (Low abatement cost) is significantly negative, while the coefficient on CS

measure (High abatement cost) is insignificant. This result suggests that firms with low carbon

abatement cost technologies are better able to hedge against transition risks. Column (2)

shows that both high and low abatement potential technologies act as hedges, while column

(3) indicates that only low cost per potential technologies serve as effective hedges. These

findings are consistent with the notion that firms utilizing low-cost climate solutions are better

positioned to profit from an increased demand for sustainable products. Such firms can offer

competitive pricing while maintaining profit margins, making them more adaptable to changes

in consumer preferences. As a result, investors may perceive them as less vulnerable to climate

transition risks.

6.3. Climate solutions, institutional ownership, and transition risk

Given that cash flows of high-climate solution firms tend to improve precisely when there

is heightened transition risk, we investigate whether certain institutional investors tilt their

portfolios towards these firms during such periods to hedge against transition risk. Specifically,

we estimate a regression model similar to Equation (7), but with additional interaction terms

between CS measure and the various measures of transition risk utilized in previous sections.

We present the results in Internet Appendix Table IA.5. Following the categorization in

Hong and Kacperczyk (2009), Panel A consists of institutions classified as mutual funds or

independent investment advisors, while Panel B comprises institutions classified as banks,

insurance companies, or others. We find that only mutual funds or independent investment

advisors adjust their holdings to increase exposure to high-climate solution firms in response to

elevated transition risk, as indicated by the significantly positive coefficients on the interaction

terms in Panel A. In contrast, we find no evidence of norm-constrained investors adjusting

their portfolio, as none of the interaction terms are significant in Panel B. These results are

consistent with the notion that investors in Panel A are natural arbitrageurs in the market and

benefit the most from hedging against transition risk (Bolton & Kacperczyk, 2021). Conversely,

investors in Panel B often have longer-term investment horizons and lower turnover ratios,

reducing the need to rebalance their portfolio holdings to hedge against transition risk.

6.4. Robustness tests

6.4.1. Equal-weighted portfolio returns

We perform the same univariate portfolio sorting analysis as in Table 2, except we compute

equal-weighted excess returns across the portfolios instead of value-weighted returns. This
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approach ensures that our results are not driven by extremely large or small firms. Internet

Appendix Table IA.6 demonstrates that the high-minus-low portfolio continues to yield a

negative return spread across all asset pricing factor tests, with the magnitude being slightly

larger than that observed using value-weighted returns.

6.4.2. More granular GICS industry classification

To account for more granular differences in the CS measure between firms in different industries,

we replicate our main analysis using 6-digit GICS industries rather than 4-digit GICS industry

groups. Internet Appendix Table IA.7 presents the results of the univariate portfolio sorting

within 6-digit GICS industries. Internet Appendix Table IA.8 displays the panel regression

results using 6-digit GICS industry fixed effects. In both tables, our main results remain

qualitatively unchanged with the use of finer industry classifications.

6.4.3. Fama-MacBeth regressions

We examine the relationship between climate solutions and individual stock returns, similar

to the analysis in Table 3, but employ Fama-MacBeth regressions instead of pooled panel

regressions. Specifically, we conduct cross-sectional regressions for each month from July of

year t to June of year t + 1. In each month, monthly returns of individual stocks in excess of

the risk-free rate are regressed on CS measure in year t − 1, different sets of control variables

known by the end of June in year t, and industry dummies based on 4-digit GICS industry

groups. We then compute the time-series mean and standard errors of the coefficient estimates

from these monthly regressions, using the Newey-West correction for 12 lags. The results,

presented in Internet Appendix Table IA.9, continue to demonstrate a robust negative CS

measure-return relationship, with similar coefficient magnitudes as observed using pooled

panel regressions.

6.4.4. Alternative controls for innovation

While we incorporate the ratio of R&D expenses to sales as a control for firms’ innovation

activities in our analyses, we also explore alternative measures of innovation as robustness

tests. One potential issue with using R&D expenses is that they represent a flow variable.

However, climate solutions often require continuous and substantial investment in R&D to

develop new technologies or enhance existing ones, leading to tangible outcomes such as new

products and services over the long term. Therefore, controlling for a firm’s accumulated stock

of R&D may be more appropriate.

To measure a firm’s stock of R&D, we employ two models that capitalize R&D. First, we

30



utilize the Knowledge capital measure proposed by Ewens, Peters, and Wang (2024), which

estimates the capital value of R&D using market prices and purchase price allocations in

acquisitions and bankruptcy recovery data to estimate industry-level R&D depreciation rates.

Second, we utilize the RDC measure introduced by Iqbal, Rajgopal, Srivastava, and Zhao

(2024), which estimates the capital value of R&D based on industry-year regressions of R&D

investment and future revenues. We scale both Knowledge capital and RDC by sales so that

they are comparable across firms.

As R&D expense primarily reflects innovation inputs, we explore two measures that

measure innovation outputs. First, we examine trade secrecy, which is one of the most

prevalent methods of protecting innovation. Following Glaeser (2018), we define Trade secret

as a dummy variable indicating whether a firm’s 10-K filings in a given year include references

to trade secrets, and zero otherwise. Second, we utilize a patent-based measure of innovation

output known as RETech, introduced by Bowen, Frésard, and Hoberg (2023). This measure is

a continuous variable that gauges the intensity with which the vocabulary of a given patent

is growing in use across the entire corpus of patents, encompassing both public and private

firms. Higher (lower) levels of RETech correspond to patents in technology areas that are

likely to substitute (complement) existing technologies. Since a firm’s innovation output may

be intermittent and unevenly spread over time, we define RETech stock as the average RETech

across all of the firm’s patent applications over the prior five years while applying a 20% yearly

rate of depreciation, scaled by the number of patents (Bowen et al., 2023).30

Internet Appendix Table IA.10 incorporates the aforementioned innovation measures as

controls in the pooled panel regressions from Table 3. Among these measures, only Trade

secret shows statistical significance, while the coefficients for the other innovation measures are

all statistically insignificant. Importantly, including these measures as control variables does

not alter the negative relationship between the CS measure and returns. Thus, our findings

are robust to controlling for these alternative measures of firms’ overall innovation activities.

6.4.5. Controlling for greenness

A potential concern is that a firm’s CS measure might reflect the greenness of the stock as

firms with more climate solutions may have better environmental ratings. However, even if

this is the case, it cannot explain our results, since Pástor et al. (2022) observe a positive
30By construction, RETech stock is equal to zero when firms have no patent applications over the prior five

years. Thus, we include a zero-patent dummy as a control variable. This variable captures a firm’s “stock” of
RETech, and scaling by the total number of patents ensures that this measure does not simply reflect the size
of its patent portfolio, ensuring comparability across firms.
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cross-sectional relationship between a stock’s greenness and stock returns. Nevertheless, we

control for the same proxy as in Pástor et al. (2022) to understand the implications for CS

measure.

We follow Pástor et al. (2022) and measure a firm’s greenness using the MSCI variables

“Environmental pillar score” (E score) and “Environmental pillar weight” (E weight). While

the environmental pillar includes themes related to environmental opportunities, the majority

of its components capture various other themes related to a firm’s operations, which are

unrelated to the firm’s products and services or non-climate focused environmental issues.31

Indeed, the correlation between CS measure and the measure of firms’ greenness (discussed

below) is only 0.04. Thus, a firm’s greenness is unlikely to be a substitute measure for a firm’s

climate solutions.

Specifically, the unadjusted greenness score for firm i in month t is calculated as

Gi,t = −(10 − E scorei,t) × E weighti,t/100 (8)

where E scorei,t and E weighti,t are from firm i’s most recent MSCI ratings date as of month

t, looking back no more than 12 months. The term 10 − E scorei,t quantifies how far the firm

deviates from a perfect environmental score of 10. The product (10 − E scorei,t) × E weighti,t

measures the firm’s brownness, capturing the interaction of how badly the firm scores on

environmental issues and how large the environmental impacts are for the industry’s typical

firm (E weighti,t). The negative sign at the beginning converts the measure from brownness

to greenness. We define a firm’s greenness as

Greennessi,t = Gi,t − Gi,t (9)

where Gi,t is the value-weighted average of Gi,t across all firms i. By subtracting Gi,t,

Greennessi,t measures the company’s greenness relative to the market portfolio.

We control for firms’ greenness in the pooled panel regressions presented in Table 3. The

results are presented in Internet Appendix Table IA.11. Column (1) considers the sample

period from July 2007 to June 2023, corresponding to the availability of MSCI data. Column

(2) narrows down the sample period from November 2012 to June 2023, coinciding with MSCI’s
31For example, other key themes include “Climate Change”, encompassing issues such as carbon emissions,

vulnerability to climate change, financing environmental impact, and product carbon footprint. “Natural
Capital” addresses biodiversity and land use, raw material sourcing, and water stress. Lastly, “Pollution and
Waste” covers aspects such as electronic waste, packaging materials and waste, as well as toxic emissions and
waste.
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expanded coverage starting in October 2012. In both columns, the coefficient on Greenness

is significantly positive. This finding is consistent with Pástor et al. (2022), who observe a

positive cross-sectional relationship between a stock’s greenness and its return, attributed

to unexpectedly strong increases in environmental concerns in recent years. Importantly,

the coefficient on CS measure remains significantly negative in both columns, indicating the

robustness of our main findings after accounting for firms’ greenness.

6.4.6. Option-implied expected returns

A potential concern is whether realized returns accurately reflect expected returns over short

sample periods. To address this concern, we utilize the generalized lower bounds (GLB) from

Chabi-Yo, Dim, and Vilkov (2023) as a proxy for expected excess returns. The GLB provides a

forward-looking, option-implied estimate of expected excess returns that accounts for the entire

risk-neutral return distribution and implicitly considers all higher-order moments. We conduct

the same univariate portfolio analysis as in Table 2, but now using GLB as the measure

of expected returns. Internet Appendix Table IA.12 demonstrates that the high-minus-low

portfolio continues to exhibit a negative return spread. Similarly, we perform the same pooled

panel regression as in Table 3, but this time utilizing GLB as the outcome variable. The results

in Internet Appendix Table IA.13 confirm that the negative CS measure-return relationship

persists when using option-implied expected returns.

7. Conclusion

We employ a novel measure of climate solutions, leveraging LLMs trained on the business

descriptions contained in publicly listed firms’ 10-K filings to analyze the asset pricing

implications of firms’ engagement in climate solutions. A long-short portfolio constructed

from firms with high versus low climate solutions within an industry group generates an

average excess return of -5.37% per year from 2005 to 2023. This negative return spread

cannot be explained by existing risk factors and continues to hold at the individual stock level

after controlling for known predictors of returns. Furthermore, high-climate solution firms

are valued at a premium by the stock market, evidenced by their higher contemporaneous

valuation ratios.

Our findings suggest that high-climate solution firms are better positioned to hedge

against transition risks, given the increased demand for their products and services during

periods of heightened transition risk. This hypothesis is supported by event studies, which

indicate that high-climate solution firms exhibit higher CARs following political and regulatory
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events, as well as international agreements, signaling increased future demand for climate

solutions. Additionally, we observe that during periods of heightened transition risk, the

future profitability of high-climate solution firms tends to improve, further supporting their

effectiveness in hedging transition risks. These insights into how financial markets perceive

and value firms engaged in climate solutions can guide policymakers, investors, and businesses

in making informed decisions to transition towards a low-carbon economy.
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Kacperczyk, M. T., & Peydró, J. L. (2022). Carbon emissions and the bank-lending channel.
Imperial College London Working Paper.

Kim, T., & Kim, Y. (2020). Capitalizing on sustainability: The value of going green. Working
Paper, Chung-Ang University and University of Seoul.

Kölbel, J. F., Leippold, M., Rillaerts, J., & Wang, Q. (2024). Ask bert: How regulatory
disclosure of transition and physical climate risks affects the cds term structure. Journal
of Financial Econometrics, 22 (1), 30–69.

Leippold, M., & Yu, T. (2023). The green innovation premium. Swiss Finance Institute
Research Paper No. 23-21.

Lev, B., Sarath, B., & Sougiannis, T. (2005). R&D reporting biases and their consequences.
Contemporary Accounting Research, 22 (4), 977–1026.

Lev, B., & Sougiannis, T. (1996). The capitalization, amortization, and value-relevance of
R&D. Journal of Accounting and Economics, 21 (1), 107–138.

Lev, B., & Sougiannis, T. (1999). Penetrating the book-to-market black box: The R&D effect.
Journal of Business Finance & Accounting, 26 (3–4), 419–449.

Li, F. (2010). The information content of forward-looking statements in corporate filings—a
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Figure 1
Cumulative abnormal returns of the high-minus-low portfolio using climate solutions.
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This figure shows the time-series of the cumulative abnormal returns from an initial investment of one dollar
based on the risk-adjusted returns of the high-minus-low portfolio in Panel E of Table 2. The sample period is
July 2006 to June 2023.
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Figure 2
Climate solutions and individual stock returns by industry group.
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This figure shows the point estimates (black dot) and 95% confidence intervals (dashed lines) of the coefficients
on CS measure using the specification in column (3) of Table 3 by industry group. The vertical axis shows the
4-digit GICS industry groups.
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Figure 3
Marginal effects of climate solutions on future profitability conditional on environmental regulatory uncertainty.
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This figure plots the marginal effects (solid line) and corresponding 95% confidence intervals (dashed line)
of climate solutions on future profitability conditional on environmental regulatory uncertainty using the
specification in columns (1), (3), and (5) of Table 8. The dependent variable in Panels A, B, and C are
Gross margini,t+1→t+10, ROSi,t+1→t+10, and ROAi,t+1→t+10, respectively. log EnvPU is the natural logarithm
of the mean of the 12-month moving-average of the EnvPU index in year t (Noailly et al., 2022). The dashed
vertical lines split the sample into quartiles based on log EnvPU.
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Figure 4
Marginal effects of climate solutions on future profitability conditional on unexpected climate change concerns.
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This figure plots the marginal effects (solid line) and corresponding 95% confidence intervals (dashed line)
of climate solutions on future profitability conditional on unexpected climate change concerns using the
specification in columns (1), (4), and (7) of Table 9. The dependent variable in Panels A, B, and C are
Gross margini,t+1→t+10, ROSi,t+1→t+10, and ROAi,t+1→t+10, respectively. UMC is the mean of the 12-month
moving-average of the prediction error from a rolling AR(1) model applied to the MCCC index controlling for
the potential effects of financial-market, energy-related, and macroeconomic variables in year t (Ardia et al.,
2023). The dashed vertical lines split the sample into quartiles based on UMC.
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Table 1
Descriptive statistics.

Panel A: Summary statistics

Variables N Mean Median P25 P75 Std. dev.

CS measure 14,311 2.695 0.615 0.000 2.174 6.124
log PE 10,434 2.983 2.931 2.585 3.312 0.751
log EM 12,542 2.310 2.259 1.949 2.591 0.653
Gross margin 14,311 0.327 0.312 0.205 0.444 0.208
ROS 14,311 0.016 0.044 -0.007 0.092 0.160
ROA 14,311 0.049 0.067 0.023 0.113 0.132
Gross margint+1→t+10 14,012 0.206 0.174 0.080 0.302 0.160
ROSt+1→t+10 14,012 0.010 0.019 -0.008 0.053 0.086
ROAt+1→t+10 14,012 0.032 0.032 0.007 0.069 0.076
log ME 13,930 7.011 7.103 5.562 8.410 2.081
log B/M 13,883 -0.659 -0.586 -1.109 -0.152 0.837
I/K 14,273 0.207 0.165 0.106 0.258 0.171
R&D/Sales 14,311 0.046 0.006 0.000 0.040 0.095
ROE 14,311 0.132 0.143 0.041 0.246 0.490
Leverage 14,262 0.247 0.236 0.083 0.366 0.204
OL 14,311 0.875 0.750 0.461 1.136 0.684
Tangibility 14,299 0.315 0.223 0.110 0.486 0.255
WW 13,455 -0.376 -0.383 -0.443 -0.315 0.104
Volatility 14,192 0.123 0.103 0.070 0.150 0.081
Momentum 13,811 1.179 1.078 0.822 1.348 0.840
log EnvPU 12,769 4.496 4.488 4.332 4.665 0.257
UMC 12,333 0.091 0.098 0.015 0.155 0.093
Sales (SCAP) 11,277 0.766 0.039 0.000 0.552 1.942
Sales (YPCCC Regulate) 9,960 65.584 71.549 68.672 74.610 20.996
Sales (YPCCC Happening) 9,960 60.806 66.045 61.790 70.340 19.812
Sales (YPCCC Worried) 9,960 51.813 55.450 50.838 61.252 17.400

Panel B: Summary statistics of CS measure by industry group

GICS industry group N Mean Median P25 P75 Std. dev.

(1010) Energy 1,776 1.725 0.257 0.000 0.847 5.223
(1510) Materials 1,895 2.320 0.962 0.000 2.339 4.764
(2010) Capital Goods 3,288 4.122 0.971 0.000 3.125 8.559
(2030) Transportation 603 0.657 0.418 0.000 1.039 0.794
(2510) Automobiles & Components 528 5.434 1.281 0.000 6.882 9.095
(2520) Consumer Durables & Apparel 911 0.784 0.000 0.000 1.000 1.602
(3020) Food, Beverage & Tobacco 690 1.415 0.338 0.000 1.058 3.053
(3030) Household & Personal Products 312 0.865 0.506 0.000 1.286 1.104
(4520) Technology Hardware & Equipment 1,811 1.032 0.303 0.000 1.003 2.508
(4530) Semiconductors & Semiconductor Equipment 1,284 3.093 0.645 0.000 1.969 7.178
(5510) Utilities 1,150 5.607 4.351 1.190 7.947 5.749
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Table 1 continued

Panel C: Correlation

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)

(1) CS measure 1
(2) log PE 0.02 1
(3) log EM 0.05 0.62 1
(4) Gross margin -0.18 0.14 0.15 1
(5) ROS -0.20 -0.33 -0.12 0.37 1
(6) ROA -0.25 -0.24 -0.27 0.35 0.75 1
(7) ROAt+1→t+10 -0.15 0.08 0.07 0.50 0.22 0.23 1
(8) ROSt+1→t+10 -0.18 0.00 0.01 0.11 0.46 0.50 0.36 1
(9) Gross margint+1→t+10 -0.24 -0.03 -0.07 0.10 0.45 0.62 0.42 0.79 1
(10) log ME -0.09 0.01 0.02 0.15 0.41 0.44 0.15 0.40 0.39 1
(11) log B/M 0.01 -0.26 -0.32 -0.20 -0.13 -0.20 -0.15 -0.16 -0.20 -0.32 1
(12) I/K 0.01 0.02 0.04 0.16 -0.04 -0.06 0.13 -0.15 -0.11 -0.09 -0.13 1
(13) R&D/Sales 0.13 0.23 0.26 0.18 -0.33 -0.41 0.14 -0.24 -0.32 -0.18 -0.16 0.23 1
(14) ROE -0.13 -0.08 -0.13 0.12 0.35 0.46 0.09 0.26 0.32 0.27 -0.32 -0.04 -0.20 1
(15) Leverage 0.01 -0.07 0.02 -0.10 -0.06 -0.03 -0.14 0.05 0.03 0.19 -0.08 -0.17 -0.24 0.11 1
(16) OL -0.04 -0.09 -0.13 -0.33 -0.12 -0.03 -0.19 -0.03 0.07 -0.25 -0.05 0.08 -0.06 0.02 -0.15 1
(17) Tangibility 0.03 -0.10 -0.14 -0.08 0.03 -0.04 -0.13 -0.03 -0.08 0.17 0.24 -0.23 -0.34 -0.02 0.29 -0.31 1
(18) WW 0.08 0.09 0.09 -0.05 -0.37 -0.41 -0.05 -0.35 -0.34 -0.82 0.08 0.17 0.30 -0.37 -0.33 0.24 -0.25 1
(19) Volatility 0.14 -0.08 0.01 -0.13 -0.38 -0.36 -0.17 -0.32 -0.29 -0.44 0.11 0.05 0.15 -0.20 0.03 0.09 -0.04 0.32 1
(20) Momentum 0.01 -0.04 0.02 0.03 0.13 0.14 -0.02 0.02 0.04 0.08 -0.18 0.04 0.00 0.07 -0.03 0.01 -0.04 -0.01 0.11 1
(21) log EnvPU 0.03 0.03 0.06 0.02 0.03 -0.01 -0.16 0.01 -0.05 0.05 -0.04 -0.09 -0.04 0.01 0.06 -0.06 0.01 -0.06 -0.01 0.14 1
(22) UMC -0.01 0.10 0.12 -0.02 -0.02 -0.04 -0.17 0.01 -0.04 0.08 -0.05 -0.06 -0.02 0.00 0.09 -0.05 0.02 -0.08 0.01 -0.11 0.09 1
(23) Sales (SCAP) 0.01 0.08 0.12 0.09 -0.02 -0.06 -0.06 -0.01 -0.09 -0.02 -0.05 0.08 0.19 -0.04 -0.05 -0.02 -0.13 0.05 0.03 0.03 0.17 0.16 1
(24) Sales (YPCCC Regulate) -0.05 0.01 0.04 0.02 0.10 0.08 -0.15 0.02 -0.02 0.15 -0.07 0.02 -0.03 0.06 0.08 -0.01 -0.02 -0.09 -0.28 0.13 0.17 -0.15 0.13 1
(25) Sales (YPCCC Happening) -0.04 0.02 0.06 0.03 0.09 0.06 -0.17 0.02 -0.04 0.14 -0.08 0.03 -0.01 0.04 0.07 -0.02 -0.03 -0.08 -0.26 0.12 0.11 -0.14 0.19 0.98 1
(26) Sales (YPCCC Worried) -0.04 0.02 0.07 0.03 0.08 0.05 -0.20 0.01 -0.06 0.14 -0.08 0.02 0.00 0.04 0.07 -0.02 -0.03 -0.08 -0.23 0.13 0.14 -0.11 0.23 0.97 0.99 1

This table presents descriptive statistics for the firm-year sample. Panel A presents summary statistics for the variables used in this paper. Panel B presents summary
statistics of the firm-year observations of CS measure across 4-digit GICS industry groups. Panel C presents the correlation matrix. The sample period is 2005 to 2023
at annual frequency. Variable definitions are presented in Table A.1 in Appendix A.
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Table 2
Univariate portfolio sorting based on climate solutions.

L 2 3 4 H H-L
Panel A: Excess returns
Excess return 0.97∗∗∗ 0.87∗∗ 0.89∗∗ 0.87∗∗ 0.52∗ -0.45∗∗

(2.81) (2.55) (2.48) (2.39) (1.90) (-2.06)
Standard deviation 5.41 5.05 5.16 5.30 4.78 2.96
Sharpe ratio 0.18 0.17 0.17 0.16 0.11 -0.15
Panel B: CAPM
αCAPM 0.26∗ -0.04 -0.08 -0.08 -0.30 -0.55∗∗∗

(1.84) (-0.27) (-0.50) (-0.37) (-1.37) (-2.64)
Panel C: FF3
αFF3 0.24 0.00 -0.08 -0.02 -0.26 -0.50∗∗∗

(1.64) (0.02) (-0.48) (-0.10) (-1.37) (-2.64)
Panel D: FF4
αFF4 0.24∗ 0.01 -0.08 -0.02 -0.28 -0.53∗∗∗

(1.66) (0.04) (-0.53) (-0.11) (-1.56) (-2.81)
Panel E: FF5
αFF5 0.10 -0.11 -0.19 -0.16 -0.39∗ -0.48∗∗

(0.73) (-0.67) (-1.29) (-0.81) (-1.93) (-2.42)
Panel F: HXZ
αHXZ 0.18 -0.04 -0.06 -0.25 -0.36∗ -0.53∗∗

(1.34) (-0.24) (-0.40) (-1.52) (-1.69) (-2.36)

This table shows the average excess returns and asset pricing factor tests for five portfolios sorted on CS
measure relative to the 4-digit GICS industry group peers. The sample period is July 2006 to June 2023. We
rebalance portfolios at the end of every June in year t by assigning firms into quintile groups based on CS
measure in year t − 1 and track the performance of the five portfolios from July of year t to June of year
t + 1. Portfolio returns are value-weighted by firms’ market capitalization. Panel A reports the average excess
returns over the risk-free rate, standard deviations, and Sharpe ratios. The remaining panels present the
alphas obtained from time-series regressions of CS measure-sorted portfolios’ excess returns on asset pricing
factors. Panel B includes the market factor (MKT) based on the CAPM model. Panel C includes the Fama
and French (1996) three factors (MKT, the size factor SMB, and the value factor HML). Panel D includes
the Carhart (1997) four factors (MKT, SMB, HML, and the momentum factor UMD). Panel E includes the
Fama and French (2015) five factors (MKT, SMB, HML, the profitability factor RMW, and the investment
factor CMA). Panel F includes the Hou et al. (2015) q-factors (MKT, SMB, the investment factor I/A, and
the profitability factor ROE). t-statistics based on standard errors using the Newey-West correction for 12 lags
are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
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Table 3
Climate solutions and individual stock returns.

Dep. variable: Ri,t (1) (2) (3)
CS measurei,t−1 -0.235∗∗∗ -0.197∗∗∗ -0.378∗∗∗

(-3.79) (-3.28) (-6.20)
log ME -0.518∗∗∗ 0.411∗∗∗

(-3.17) (3.33)
log B/M 0.090 0.088

(1.25) (1.34)
I/K -0.171∗∗∗ -0.272∗∗∗

(-3.08) (-4.49)
R&D/Sales 0.073 -0.006

(1.04) (-0.08)
ROA 0.161∗∗ 0.615∗∗∗

(2.08) (7.78)
Leverage 0.061 -0.168∗∗∗

(1.03) (-2.89)
Tangibility -0.069 -0.217∗∗∗

(-1.12) (-3.15)
WW -0.448∗∗ -0.205

(-2.48) (-1.58)
Volatility 2.401∗∗∗

(20.32)
Momentum -0.490∗∗∗

(-5.97)

Industry F.E. Yes Yes Yes
Year-Month F.E. Yes Yes Yes
Observations 165,637 155,788 152,794
R2 0.18 0.19 0.21

This table reports pooled panel regressions of individual excess stock returns on their CS measure and other
firm characteristics. In each month from July of year t to June of year t + 1, monthly returns over the risk-free
rate of individual stocks (Ri,t) are regressed on CS measure in year t − 1, different sets of control variables
known by the end of June in year t, and industry fixed effects. Control variables include the natural logarithm
of market capitalization (ME), the natural logarithm of book-to-market ratio (B/M ), investment rate (I/K ),
ratio of R&D to sales (R&D/Sales), return on assets (ROA), book leverage (Leverage), tangibility (Tangibility),
Whited-Wu index (WW ), stock return volatility (Volatility), stock return momentum (Momentum), and
industry dummies based on 4-digit GICS industry groups. All independent variables are normalized to a
zero mean and one standard deviation and winsorized at the 1st and 99th percentiles to reduce the impact of
outliers. The sample period is July 2006 to June 2023. Robust t-statistics based on standard errors clustered
at the firm level are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table 4
Double portfolio sorting.

Sautner et al.’s (2023a) CCExposure Carbon emissions

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

L 2 3 4 H H-L L 2 3 4 H H-L

Panel A: Excess return

Bottom 0.89∗∗ 0.79∗∗ 0.67∗ 0.93∗∗ 0.21 -0.63∗∗∗ 0.94∗∗ 0.68 0.71∗ 0.57∗ 0.21 -0.73∗

(2.42) (2.10) (1.85) (2.38) (0.48) (-2.79) (2.35) (1.29) (1.81) (1.89) (0.42) (-1.80)
Top 1.45∗∗∗ 0.84∗∗ 0.80∗ 0.71∗ 0.46 -0.99∗∗∗ 1.16∗∗∗ 0.81∗∗ 0.72∗ 0.78∗∗ 0.49∗ -0.66∗∗∗

(3.34) (2.17) (1.93) (1.79) (1.61) (-2.99) (3.10) (2.23) (1.69) (2.05) (1.70) (-2.70)

Panel B: CAPM

Bottom 0.03 -0.05 -0.17 -0.01 -0.64∗∗∗ -0.63∗∗∗ 0.10 -0.19 -0.15 -0.15 -0.67∗ -0.78∗

(0.19) (-0.21) (-1.08) (-0.02) (-2.77) (-2.72) (0.60) (-0.62) (-0.65) (-0.99) (-1.78) (-1.83)
Top 0.58∗∗∗ 0.01 -0.06 -0.11 -0.23 -0.81∗∗ 0.28∗ -0.01 -0.10 -0.01 -0.22 -0.50∗∗

(2.63) (0.03) (-0.28) (-0.41) (-0.93) (-2.49) (1.68) (-0.06) (-0.59) (-0.03) (-0.90) (-2.10)

Panel C: FF3

Bottom 0.07 0.03 -0.12 -0.01 -0.58∗∗ -0.63∗∗ 0.13 -0.19 -0.12 -0.10 -0.69∗ -0.82∗∗

(0.54) (0.14) (-0.85) (-0.02) (-2.50) (-2.60) (0.75) (-0.61) (-0.54) (-0.78) (-1.95) (-2.06)
Top 0.53∗∗ 0.04 -0.06 -0.04 -0.20 -0.73∗∗ 0.24 0.05 -0.10 0.03 -0.18 -0.43∗∗

(2.37) (0.24) (-0.29) (-0.17) (-0.90) (-2.50) (1.44) (0.24) (-0.63) (0.12) (-0.86) (-2.12)

Panel D: FF4

Bottom 0.08 0.04 -0.12 0.00 -0.58∗∗ -0.63∗∗∗ 0.14 -0.17 -0.11 -0.11 -0.70∗∗ -0.84∗∗

(0.58) (0.19) (-0.81) (0.02) (-2.51) (-2.64) (0.76) (-0.54) (-0.52) (-0.92) (-2.03) (-2.15)
Top 0.53∗∗ 0.03 -0.08 -0.05 -0.23 -0.75∗∗ 0.25 0.04 -0.11 0.02 -0.20 -0.45∗∗

(2.35) (0.16) (-0.39) (-0.19) (-1.06) (-2.59) (1.46) (0.23) (-0.69) (0.07) (-1.00) (-2.22)

Panel E: FF5

Bottom -0.05 -0.09 -0.23∗ -0.10 -0.67∗∗ -0.59∗∗ -0.02 -0.16 -0.23 -0.30∗ -0.68∗ -0.66∗

(-0.40) (-0.44) (-1.70) (-0.47) (-2.52) (-2.44) (-0.13) (-0.53) (-0.99) (-1.82) (-1.83) (-1.68)
Top 0.38∗ -0.05 -0.18 -0.20 -0.33 -0.71∗∗ 0.12 -0.10 -0.22 -0.16 -0.33 -0.45∗∗

(1.79) (-0.32) (-0.89) (-0.80) (-1.46) (-2.36) (0.76) (-0.52) (-1.46) (-0.68) (-1.57) (-2.19)

Panel F: HXZ

Bottom 0.02 -0.03 -0.16 -0.09 -0.62∗∗∗ -0.60∗∗∗ 0.09 -0.08 -0.08 -0.16 -0.51 -0.60
(0.14) (-0.14) (-1.16) (-0.41) (-2.76) (-2.77) (0.54) (-0.24) (-0.34) (-1.10) (-1.47) (-1.58)

Top 0.47∗∗ -0.01 -0.04 -0.33 -0.29 -0.77∗∗ 0.18 -0.04 -0.11 -0.22 -0.31 -0.49∗∗

(2.18) (-0.08) (-0.17) (-1.53) (-1.18) (-2.27) (1.14) (-0.18) (-0.63) (-1.09) (-1.31) (-2.02)

This table shows average excess returns and asset pricing factor tests for ten portfolios independently double
sorted. In columns (1) through (6), double sorting is based on five portfolios for the CS measure and two
portfolios for Sautner et al.’s (2023a) CCExposure measure, relative to 4-digit GICS industry group peers. We
rebalance portfolios at the end of every June in year t by assigning firms into bottom and top groups based
on the median value of the CCExposure measure in year t − 1 and into quintile groups based on CS measure
in year t − 1. In columns (7) through (13), we present results from double sorting into five portfolios based
on the CS measure and two portfolios based on the natural logarithm of the sum of a firm’s scope 1 and 2
greenhouse gas emissions (log Scope 1 and 2 ), each relative to its 4-digit GICS industry group peers. We
rebalance portfolios at the end of every June in year t by assigning firms into bottom and top groups based on
the median value of log Scope 1 and 2 in year t − 1 and into quintile groups based on CS measure in year t − 1.
The sample period is July 2006 to June 2023. We track the performance of the ten portfolios from July of
year t to June of year t + 1. Portfolio returns are value-weighted by firms’ market capitalization. We present
the excess returns and alphas obtained from time-series regressions of the portfolio’s excess returns on asset
pricing factors. Panel A reports the average excess returns over the risk-free rate. Panel B includes the market
factor (MKT) based on the CAPM model. Panel C includes the Fama and French (1996) three factors (MKT,
the size factor SMB, and the value factor HML). Panel D includes the Carhart (1997) four factors (MKT,
SMB, HML, and the momentum factor UMD). Panel E includes the Fama and French (2015) five factors
(MKT, SMB, HML, the profitability factor RMW, and the investment factor CMA). Panel F includes the Hou
et al. (2015) q-factors (MKT, SMB, the investment factor I/A, and the profitability factor ROE). t-statistics
based on standard errors using the Newey-West correction for 12 lags are reported in parentheses. *, **, and
*** indicate significance at the 10%, 5%, and 1% level, respectively.
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Table 5
Panel regressions with controls for other climate-related measures.

Panel A: Sautner et al.’s (2023a) CCExposure

Dep. variable: Ri,t (1) (2) (3) (4)

CS measurei,t−1 -0.170∗∗ -0.170∗∗ -0.326∗∗∗ -0.322∗∗∗

(-2.18) (-2.31) (-4.51) (-4.59)
CCExposure -0.004 -0.016

(-0.06) (-0.25)
CCExposureOpp -0.035 -0.034

(-0.66) (-0.62)
CCExposureReg 0.072 0.014

(1.50) (0.29)
CCExposureP hy -0.022 0.003

(-0.61) (0.09)

Controls Yes Yes Yes Yes
Industry F.E. Yes Yes Yes Yes
Year-Month F.E. Yes Yes Yes Yes
Observations 143,213 143,213 132,683 132,683
R2 0.20 0.20 0.23 0.23

Panel B: Carbon emissions

Dep. variable: Ri,t (1) (2) (3) (4)

CS measurei,t−1 -0.270∗∗∗ -0.274∗∗∗ -0.272∗∗∗ -0.269∗∗∗

(-4.07) (-4.04) (-4.11) (-4.07)
log Scope 1 0.133

(1.37)
log Scope 2 0.243∗∗∗

(3.00)
Scope 1 int -0.077

(-1.10)
Scope 2 int -0.057

(-1.05)

Controls Yes Yes Yes Yes
Industry F.E. Yes Yes Yes Yes
Year-Month F.E. Yes Yes Yes Yes
Observations 83,025 83,025 83,025 83,025
R2 0.27 0.27 0.27 0.27

This table reports pooled panel regressions of individual excess stock returns on their CS measure and controls
for other climate-related measures. In Panel A, we include controls for Sautner et al.’s (2023a) measure in
year t − 1 and in Panel B, we include controls for carbon emissions in year t − 1. In each month from July of
year t to June of year t + 1, monthly returns over the risk-free rate of individual stocks (Ri,t) are regressed on
CS measure in year t − 1, other climate-related measures in year t − 1, control variables known by the end of
June in year t, and industry fixed effects. We use Sautner et al.’s (2023a) firm-level exposure measures related
to climate change (CCExposure), opportunity (CCExposureOpp), regulatory (CCExposureReg), and physical
(CCExposureP hy) shocks. log Scope 1 and log Scope 2 are the natural logarithm of a firm’s scope 1 and 2
greenhouse gas emissions, respectively. Scope 1 int and Scope 2 int are a firm’s scope 1 and scope 2 carbon
emission intensity, respectively. Both emission intensity measures are winsorized at the 2.5% level. Control
variables include the natural logarithm of market capitalization (ME), the natural logarithm of book-to-market
ratio (B/M ), investment rate (I/K), ratio of R&D to sales (R&D/Sales), return on assets (ROA), book
leverage (Leverage), tangibility (Tangibility), Whited-Wu index (WW ), stock return volatility (Volatility),
stock return momentum (Momentum), and industry dummies based on 4-digit GICS industry groups. All
independent variables are normalized to a zero mean and one standard deviation and winsorized at the 1st
and 99th percentiles to reduce the impact of outliers. The sample period is July 2006 to June 2023. Robust
t-statistics based on standard errors clustered at the firm level are reported in parentheses. *, **, and ***
indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1
in Appendix A. 48



Table 6
Contemporaneous valuation regressions.

Dep. variable: log MBi,t log PE i,t log EM i,t

(1) (2) (3) (4) (5) (6)

CS measurei,t 0.051∗∗ 0.052∗∗∗ 0.040∗∗ 0.036∗∗ 0.047∗∗ 0.046∗∗∗

(2.43) (4.60) (2.03) (2.28) (2.20) (3.17)
I/K 0.127∗∗∗ 0.126∗∗∗ -0.020 -0.012 0.009 0.014

(8.92) (9.67) (-1.39) (-0.84) (0.70) (1.29)
R&D/Sales 0.265∗∗∗ 0.266∗∗∗ 0.338∗∗∗ 0.331∗∗∗ 0.289∗∗∗ 0.291∗∗∗

(8.50) (14.34) (9.32) (13.24) (5.45) (8.86)
ROE 0.268∗∗∗ 0.272∗∗∗ -0.170∗∗∗ -0.162∗∗∗ -0.206∗∗∗ -0.193∗∗∗

(6.60) (7.01) (-4.95) (-4.85) (-6.84) (-8.19)
F1ROE 0.117∗∗∗ 0.113∗∗∗ 0.018 0.015 0.025∗ 0.022

(7.33) (4.52) (0.85) (0.63) (1.70) (1.57)
F2ROE 0.066∗∗∗ 0.063∗∗∗ 0.052∗∗∗ 0.048∗∗ 0.029∗∗∗ 0.024∗∗

(4.20) (3.04) (2.88) (2.44) (2.69) (2.11)
F3ROE 0.056∗∗∗ 0.058∗∗∗ -0.005 -0.008 0.017 0.019

(4.32) (4.51) (-0.27) (-0.46) (1.30) (1.44)
Leverage 0.067∗∗∗ 0.065∗∗∗ 0.007 0.010 0.071∗∗∗ 0.070∗∗∗

(3.11) (4.36) (0.42) (0.79) (4.79) (7.26)
OL 0.043∗∗ 0.044∗∗∗ -0.049∗∗∗ -0.046∗∗∗ -0.080∗∗∗ -0.076∗∗∗

(2.35) (4.01) (-3.68) (-4.25) (-5.64) (-7.69)
Tangibility -0.068∗∗∗ -0.066∗∗∗ -0.019 -0.017 -0.089∗∗∗ -0.087∗∗∗

(-2.74) (-5.27) (-0.83) (-1.09) (-4.51) (-7.41)
WW -0.004 -0.005 0.112∗∗∗ 0.110∗∗∗ 0.101∗∗∗ 0.099∗∗∗

(-0.19) (-0.35) (7.11) (8.68) (6.80) (10.82)
Volatility -0.139∗∗∗ -0.137∗∗∗ -0.092∗∗∗ -0.088∗∗∗ -0.056∗∗∗ -0.046∗∗∗

(-8.57) (-7.69) (-4.63) (-4.33) (-3.78) (-3.21)
Momentum 0.097∗∗∗ 0.091∗∗∗ 0.053∗∗∗ 0.047∗∗∗ 0.047∗∗∗ 0.040∗∗∗

(9.59) (6.34) (4.05) (3.02) (5.08) (3.64)

Industry F.E. Yes No Yes No Yes No
Year F.E. Yes No Yes No Yes No
Industry × Year F.E. No Yes No Yes No Yes
Observations 10,755 10,749 8,261 8,251 9,672 9,667
R2 0.35 0.36 0.15 0.17 0.23 0.25

This table reports pooled panel regressions of a stock’s contemporaneous valuation on its CS measure and
various control variables. The three valuation measures are log MB, the natural logarithm of market-to-book
ratio, log PE, the natural logarithm of price-to-earnings ratio, and log EM, the natural logarithm of enterprise
value to EBITDA ratio. Observations are dropped if the denominator of the valuation ratio is negative. Control
variables include the investment rate (I/K), ratio of R&D to sales (R&D/Sales), return on equity (ROE),
returns on equity for the next three years (F1ROE, F2ROE, and F3ROE), book leverage (Leverage), operating
leverage (OL), tangibility (Tangibility), Whited-Wu index (WW ), stock return volatility (Volatility), and
stock return momentum (Momentum). We omit control variables that are related to the valuation ratios by
construction (i.e., log ME and log B/M ). Industry and Industry × Year fixed effects are based on 4-digit GICS
industry groups. All independent variables are normalized to a zero mean and one standard deviation and
winsorized at the 1st and 99th percentiles to reduce the impact of outliers. The sample period is 2005 to 2023.
Robust t-statistics based on standard errors clustered at the firm level (columns (1), (3), and (5)) and industry
× year level (columns (2), (4), and (6)) are reported in parentheses. *, **, and *** indicate significance at the
10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table 7
Event study around climate-related regulatory shocks.

L 2 3 4 H H-L

Panel A: MA vs EPA (April 2, 2007)

CAR(0, +5) -1.084∗ -0.228 -0.896 0.163 0.693 1.777∗

(-2.00) (-0.56) (-1.64) (0.14) (0.66) (2.07)

Panel B: Paris Agreement (December 12, 2015)

CAR(0, +5) -2.399∗ -1.249 -0.610 0.251 3.679∗ 6.078∗∗∗

(-2.13) (-1.30) (-1.11) (0.28) (1.93) (4.01)

Panel C: Trump election (November 8, 2016)

CAR(0, +5) 3.745∗∗∗ 3.618∗ 3.152∗ 2.974∗ 1.600 -2.145∗∗

(3.40) (2.07) (2.03) (1.99) (1.04) (-2.57)

Panel D: Biden election (December 14, 2020)

CAR(0, +5) -1.631∗∗ -1.371 -0.839 -0.500 1.777∗ 3.408∗∗

(-2.62) (-1.26) (-1.14) (-0.64) (2.09) (2.71)

Panel E: IRA (July 27, 2022)

CAR(0, +5) -1.880∗∗ -1.392∗∗ -0.560 1.554 6.229∗∗ 8.109∗∗∗

(-2.26) (-2.34) (-0.74) (1.28) (2.91) (4.76)

Panel F: Cross-sectional regressions

MA vs EPA Paris Trump Biden IRA
Agreement election election

Dep. variable: CAR(0, +5) (1) (2) (3) (4) (5)

CS measure 0.609∗∗∗ 1.392∗∗∗ -1.441∗∗∗ 1.415∗∗ 1.755∗∗

(3.07) (3.60) (-5.19) (2.44) (3.04)
log ME 0.127 0.048 -0.830∗∗ -0.040 0.038

(0.77) (0.15) (-3.05) (-0.87) (0.63)
log B/M 0.719∗ -0.310 0.271 -0.980∗∗ -0.570

(2.07) (-1.05) (0.68) (-3.06) (-1.14)
I/K -0.262 0.016 -0.263 -0.296 -0.493

(-0.71) (0.19) (-1.05) (-0.53) (-1.48)
R&D/Sales -0.533 0.364 2.930∗∗ 1.702 0.208∗

(-1.25) (0.21) (2.58) (1.24) (2.17)
ROA 0.348 -1.101 0.900 -1.127 -0.584

(0.93) (-1.04) (1.52) (-1.72) (-1.11)
Leverage -0.204 -0.497 -1.543∗∗ -0.639 -0.148

(-0.78) (-1.12) (-3.02) (-1.55) (-0.31)
Tangibility -0.156 -0.272 -0.192 -0.432∗ 0.206

(-0.47) (-0.32) (-0.41) (-1.87) (0.45)
WW -0.108 -0.281 0.105 0.094 0.130

(-0.95) (-1.11) (0.17) (0.17) (0.94)
Volatility 0.286 -0.373 2.375∗∗ 0.290 0.994

(0.34) (-0.52) (2.88) (0.76) (1.45)
Momentum -0.442 -2.211∗∗∗ -2.408∗∗∗ 0.102 -1.884∗∗∗

(-1.63) (-3.36) (-4.57) (0.35) (-4.33)

Industry F.E. Yes Yes Yes Yes Yes
Observations 1,074 1,197 1,141 1,064 1058
R2 0.02 0.16 0.20 0.13 0.13

Panels A to E present mean cumulative abnormal returns (%) around various climate-related regulatory events
for stocks sorted on CS measure relative to the 4-digit GICS industry group peers. We report daily cumulative
abnormal returns based on the market model over a 5-day window from the event date, which we refer to as
a (0, +5) window. Panel F presents cross-sectional regressions of CAR(0, +5) on stocks’ known value of CS
measure at the time of the event. Control variables include the natural logarithm of market capitalization
(ME), the natural logarithm of book-to-market ratio (B/M ), investment rate (I/K), ratio of R&D to sales
(R&D/Sales), return on assets (ROA), book leverage (Leverage), tangibility (Tangibility), Whited-Wu index
(WW ), stock return volatility (Volatility), stock return momentum (Momentum), and industry dummies based
on 4-digit GICS industry groups. All independent variables are normalized to a zero mean and one standard
deviation and winsorized at the 1st and 99th percentiles to reduce the impact of outliers. Robust t-statistics
based on standard errors clustered at the industry level are reported in parentheses. *, **, and *** indicate
significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1 in
Appendix A.
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Table 8
Climate solutions, future profitability, and environmental regulatory uncertainty.

Dep. variable: Gross margini,t+1→t+10 ROSi,t+1→t+10 ROAi,t+1→t+10

(1) (2) (3) (4) (5) (6)

CS measurei,t -0.094∗∗ -0.087∗∗ -0.168∗∗ -0.199∗∗∗ -0.098∗∗∗ -0.119∗∗∗

(-2.29) (-2.34) (-2.16) (-2.64) (-3.90) (-3.75)
CS measurei,t × log EnvPU t 0.019∗∗ 0.018∗∗ 0.034∗∗ 0.041∗∗ 0.020∗∗∗ 0.025∗∗∗

(2.14) (2.18) (1.97) (2.47) (3.73) (3.51)
Gross margin 0.077∗∗∗ 0.079∗∗∗

(16.54) (17.08)
∆Gross margin -0.015∗∗∗ -0.015∗∗∗

(-6.05) (-5.03)
ROS 0.078∗∗∗ 0.082∗∗∗

(11.11) (15.69)
∆ROS -0.017∗∗∗ -0.018∗∗∗

(-5.55) (-4.98)
ROA 0.044∗∗∗ 0.046∗∗∗

(15.52) (24.03)
∆ROA -0.007∗∗∗ -0.008∗∗∗

(-7.61) (-6.06)
log ME 0.024∗∗∗ 0.023∗∗∗ 0.028∗∗∗ 0.027∗∗∗ 0.015∗∗∗ 0.015∗∗∗

(6.13) (6.22) (4.56) (5.73) (7.68) (9.13)
log B/M -0.016∗∗∗ -0.016∗∗∗ -0.006 -0.007∗∗ -0.008∗∗∗ -0.008∗∗∗

(-4.95) (-5.66) (-1.19) (-2.04) (-3.96) (-6.73)
I/K -0.007∗∗∗ -0.007∗∗∗ -0.011∗∗∗ -0.009∗∗∗ -0.005∗∗∗ -0.004∗∗∗

(-3.19) (-3.62) (-2.96) (-2.66) (-4.16) (-3.77)
R&D/Sales -0.004 -0.003 -0.022∗∗∗ -0.020∗∗∗ -0.012∗∗∗ -0.012∗∗∗

(-0.90) (-1.47) (-3.55) (-5.14) (-5.52) (-7.47)
ROE -0.014∗∗∗ -0.013∗∗∗ -0.000 -0.000 -0.008∗∗∗ -0.008∗∗∗

(-3.50) (-3.65) (-0.07) (-0.06) (-3.22) (-4.50)
Leverage -0.015∗∗∗ -0.014∗∗∗ 0.005 0.006∗∗∗ 0.002 0.003∗∗

(-4.60) (-8.01) (1.37) (3.02) (1.17) (2.60)
OL -0.014∗∗∗ -0.013∗∗∗ 0.011∗∗∗ 0.012∗∗∗ 0.007∗∗∗ 0.007∗∗∗

(-3.94) (-6.18) (4.08) (5.37) (4.80) (8.84)
Tangibility -0.006 -0.007∗∗ -0.008 -0.007 -0.003 -0.003

(-1.43) (-2.36) (-1.55) (-1.48) (-1.31) (-1.36)
WW 0.000 -0.000 0.000 0.001 -0.001 -0.001

(0.08) (-0.05) (0.00) (0.19) (-0.82) (-0.54)
Volatility -0.010∗∗∗ -0.013∗∗∗ -0.015∗∗∗ -0.018∗∗∗ -0.006∗∗∗ -0.008∗∗∗

(-4.07) (-7.11) (-3.79) (-6.10) (-4.21) (-6.27)
Momentum 0.001 0.002 0.002 0.004∗ -0.001 -0.001

(0.44) (0.84) (1.07) (1.77) (-1.13) (-0.62)

Industry F.E. Yes No Yes No Yes No
Year F.E. Yes No Yes No Yes No
Industry × Year F.E. No Yes No Yes No Yes
Observations 11,404 11,394 11,404 11,394 11,404 11,394
R2 0.49 0.50 0.42 0.45 0.52 0.54

This table reports pooled panel regressions of a stock’s future profitability on its CS measure, environmental
regulatory uncertainty, and their interactions, together with other control variables in year t. The future
profitability measures are the moving-average from year t+1 to t+10 of gross margin (Gross margini,t+1→t+10),
return on sales (ROSi,t+1→t+10), and return on assets (ROAi,t+1→t+10). We measure environmental regulatory
uncertainty using the natural logarithm of the mean of the 12-month moving-average of the EnvPU index in
year t (Noailly et al., 2022). Control variables include the values of the profitability measures in year t (Gross
margin, ROS, and ROA) and their changes from year t − 1 (∆Gross margin, ∆ROS, and ∆ROA), natural
logarithm of market capitalization (ME), the natural logarithm of book-to-market ratio (B/M ), investment
rate (I/K ), ratio of R&D to sales (R&D/Sales), return on equity (ROE), book leverage (Leverage), operating
leverage (OL), tangibility (Tangibility), Whited-Wu index (WW ), stock return volatility (Volatility), and
stock return momentum (Momentum). Industry and Industry × Year fixed effects are based on 4-digit GICS
industry groups. All independent variables (except for log EnvPU ) are normalized to a zero mean and one
standard deviation and winsorized at the 1st and 99th percentiles to reduce the impact of outliers. The sample
period is 2005 to 2019. Robust t-statistics based on standard errors clustered at the firm level (columns (1),
(3), and (5)) and industry × year level (columns (2), (4), and (6)) are reported in parentheses. *, **, and ***
indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1
in Appendix A.
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Table 9
Climate solutions, future profitability, and unexpected climate change concerns.

Dep. variable: Gross margini,t+1→t+10 ROSi,t+1→t+10 ROAi,t+1→t+10

(1) (2) (3) (4) (5) (6) (7) (8) (9)

CS measurei,t -0.011∗∗∗ -0.010∗∗∗ -0.011∗∗∗ -0.021∗∗∗ -0.019∗∗∗ -0.020∗∗∗ -0.011∗∗∗ -0.009∗∗∗ -0.010∗∗∗

(-3.81) (-3.63) (-3.77) (-3.67) (-3.70) (-3.55) (-5.17) (-5.00) (-4.94)
CS measurei,t × UMC t 0.041∗∗∗ 0.070∗∗ 0.050∗∗∗

(2.59) (2.50) (4.71)
CS measurei,t × UMCBI

t 0.023∗∗ 0.054∗∗ 0.034∗∗∗

(2.03) (2.45) (4.28)
CS measurei,t × UMCSD

t 0.031∗∗∗ 0.049∗∗ 0.038∗∗∗

(2.58) (2.12) (4.30)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Industry F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 11,041 11,041 11,041 11,041 11,041 11,041 11,041 11,041 11,041
R2 0.52 0.52 0.52 0.39 0.39 0.39 0.48 0.48 0.48

This table reports pooled panel regressions of a stock’s future profitability on its CS measure, unexpected media
climate change concerns, and their interactions, together with other control variables in year t. The future
profitability measures are the moving-average from year t+1 to t+10 of gross margin (Gross margini,t+1→t+10),
return on sales (ROSi,t+1→t+10), and return on assets (ROAi,t+1→t+10). We measure unexpected climate
change concerns as the prediction error from a rolling AR(1) model applied to the MCCC index controlling for
the potential effects of financial-market, energy-related, and macroeconomic variables (Ardia et al., 2023). UMC
is the mean of the 12-month moving-average of the unexpected climate change concerns in year t. UMC BI and
UMC SD are the UMC computed based on the themes “Business Impact” and “Societal Debate”, respectively
(Ardia et al., 2023). Control variables include the values of the profitability measures in year t (Gross margin,
ROS, and ROA) and their changes from year t − 1 (∆Gross margin, ∆ROS, and ∆ROA), natural logarithm of
market capitalization (ME), the natural logarithm of book-to-market ratio (B/M ), investment rate (I/K),
ratio of R&D to sales (R&D/Sales), return on equity (ROE), book leverage (Leverage), operating leverage
(OL), tangibility (Tangibility), Whited-Wu index (WW ), stock return volatility (Volatility), stock return
momentum (Momentum), and industry dummies based on 4-digit GICS industry groups. All independent
variables (except for the UMC variables) are normalized to a zero mean and one standard deviation and
winsorized at the 1st and 99th percentiles to reduce the impact of outliers. The sample period is 2008 to 2022.
Robust t-statistics based on standard errors clustered at the firm level are reported in parentheses. *, **,
and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in
Table A.1 in Appendix A.
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Table 10
Climate solutions, future profitability, and firm-level exposure to climate-related shocks.

(1) (2) (3) (4)

Panel A: Gross margini,t+1→t+10

CS measurei,t -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗ -0.007∗∗∗

(-3.21) (-3.15) (-3.15) (-3.15)
Sales (SCAP)i,t -0.006∗∗∗

(-3.73)
Sales (YPCCC Regulate)i,t -0.005

(-1.34)
Sales (YPCCC Happening)i,t -0.005

(-1.32)
Sales (YPCCC Worried)i,t -0.005

(-1.34)
CS measurei,t × Sales (SCAP)i,t 0.003∗

(1.85)
CS measurei,t × Sales (YPCCC Regulate)i,t 0.003∗∗

(2.12)
CS measurei,t × Sales (YPCCC Happening)i,t 0.003∗∗

(2.28)
CS measurei,t × Sales (YPCCC Worried)i,t 0.003∗∗

(2.40)

Controls Yes Yes Yes Yes
Industry F.E. Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes
Observations 10,468 8,650 8,650 8,650
R2 0.63 0.60 0.60 0.60

Panel B: ROSi,t+1→t+10

CS measurei,t -0.015∗∗∗ -0.004 -0.005 -0.005
(-3.44) (-1.20) (-1.25) (-1.21)

Sales (SCAP)i,t -0.000
(-0.15)

Sales (YPCCC Regulate)i,t -0.003
(-1.28)

Sales (YPCCC Happening)i,t -0.003
(-1.15)

Sales (YPCCC Worried)i,t -0.003
(-0.99)

CS measurei,t × Sales (SCAP)i,t 0.004∗

(1.95)
CS measurei,t × Sales (YPCCC Regulate)i,t 0.003∗

(1.66)
CS measurei,t × Sales (YPCCC Happening)i,t 0.004∗

(1.71)
CS measurei,t × Sales (YPCCC Worried)i,t 0.004∗

(1.72)

Controls Yes Yes Yes Yes
Industry F.E. Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes
Observations 10,468 8,650 8,650 8,650
R2 0.40 0.38 0.38 0.38
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Table 10 continued

Panel C: ROAi,t+1→t+10

CS measurei,t -0.007∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗

(-4.20) (-3.61) (-3.58) (-3.58)
Sales (SCAP)i,t -0.000

(-0.25)
Sales (YPCCC Regulate)i,t -0.003

(-1.04)
Sales (YPCCC Happening)i,t -0.003

(-1.03)
Sales (YPCCC Worried)i,t -0.003

(-1.07)
CS measurei,t × Sales (SCAP)i,t 0.002∗∗

(2.19)
CS measurei,t × Sales (YPCCC Regulate)i,t 0.002∗

(1.87)
CS measurei,t × Sales (YPCCC Happening)i,t 0.002∗∗

(2.06)
CS measurei,t × Sales (YPCCC Worried)i,t 0.002∗∗

(2.09)

Controls Yes Yes Yes Yes
Industry F.E. Yes Yes Yes Yes
Year F.E. Yes Yes Yes Yes
Observations 10,468 8,650 8,650 8,650
R2 0.51 0.49 0.49 0.49

This table reports pooled panel regressions of a stock’s future profitability on its CS measure, firm-level exposure
to climate-related shocks, and their interactions, together with other control variables in year t. The future
profitability measures are the moving-average from year t+1 to t+10 of gross margin (Gross margini,t+1→t+10)
in Panel A, return on sales (ROSi,t+1→t+10) in Panel B, and return on assets (ROAi,t+1→t+10) in Panel C.
We measure firm-level exposure to climate-related shocks using the weighted-average (based on the firm’s
state-level sales) of cumulative state-level climate plans, focusing exclusively on mitigation strategies (Sales
(SCAP)) and YPCCC’s survey questions on the percentage of the adult population in a given state who
support regulating CO2 as a pollutant (Sales (YPCCC Regulate)), think global warming is happening (Sales
(YPCCC Happening)), and are worried about global warming (Sales (YPCCC Worried)). See text for the
details of the construction of these variables. Control variables include the values of the profitability measures
in year t (Gross margin, ROS, and ROA) and their changes from year t − 1 (∆Gross margin, ∆ROS, and
∆ROA), natural logarithm of market capitalization (ME), the natural logarithm of book-to-market ratio
(B/M ), investment rate (I/K ), ratio of R&D to sales (R&D/Sales), return on equity (ROE), book leverage
(Leverage), operating leverage (OL), tangibility (Tangibility), Whited-Wu index (WW ), stock return volatility
(Volatility), stock return momentum (Momentum), and industry dummies based on 4-digit GICS industry
groups. All independent variables are normalized to a zero mean and one standard deviation and winsorized at
the 1st and 99th percentiles to reduce the impact of outliers. The sample period is 2005 to 2023 for column (1)
and 2008 to 2022 for columns (2) to (4). Robust t-statistics based on standard errors clustered at the firm level
are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
Variable definitions are presented in Table A.1 in Appendix A.
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Table 11
Climate solutions and institutional ownership.

All institutional Natural arbitrageurs Norm-constrained
investors (mutual funds, independent (banks, insurance,

investment advisors) others)

Dep. variable: IOj,i,t+1→t+4 (1) (2) (3)

CS measurei,t -0.001 -0.006 0.001
(-0.27) (-1.16) (0.56)

Firm and Institutional Investor Controls Yes Yes Yes
Institutional Investor F.E. Yes Yes Yes
Firm F.E. Yes Yes Yes
Year-Quarter F.E. Yes Yes Yes
Observations 11,357,779 3,413,784 7,943,718
Adj R2 0.49 0.51 0.48

This table reports the results of panel regressions at the investor-firm-quarter level of investor demand on CS
measure and other control variables in quarter t. Investor demand is measured as the moving-average from
quarter t + 1 to t + 4 of the institutional ownership (obtained from 13F reports) held by investor j in firm i
(IOj,i,t+1→t+4). Column (1) uses the full sample of institutional investors. Column (2) uses the subsample of
institutions classified as mutual funds or independent investment advisors. Column (3) uses the subsample
of institutions classified as banks, insurance companies, or others including pension plans, endowments, and
employee-ownership plans. Control variables include the natural logarithm of market capitalization (ME), the
natural logarithm of book-to-market ratio (B/M ), investment rate (I/K ), ratio of R&D to sales (R&D/Sales),
return on equity (ROE), book leverage (Leverage), operating leverage (OL), tangibility (Tangibility), Whited-
Wu index (WW ), stock return volatility (Volatility), stock return momentum (Momentum), and investors’
portfolio size (Portfolio size) and portfolio concentration (Portfolio concentration). All independent variables
are normalized to a zero mean and one standard deviation and winsorized at the 1st and 99th percentiles to
reduce the impact of outliers. The sample period is 2005 to 2023. Robust t-statistics based on standard errors
clustered at the firm level are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%,
and 1% level, respectively. Variable definitions are presented in Table A.1 in Appendix A.

55



Table 12
Interaction between climate solutions and carbon emissions.

Dep. variable: Ri,t (1) (2) (3) (4)
CS measurei,t−1 -0.137∗∗ -0.225∗∗∗ -0.229∗∗∗ -0.274∗∗∗

(-2.15) (-3.46) (-3.47) (-3.95)
log Scope 1 0.106

(1.07)
log Scope 2 0.220∗∗∗

(2.63)
Scope 1 int -0.146∗

(-1.70)
Scope 2 int -0.068

(-1.24)
CS measurei,t−1 × log Scope 1 0.169∗∗∗

(3.35)
CS measurei,t−1 × log Scope 2 0.066

(1.40)
CS measurei,t−1 × Scope 1 int 0.212∗∗∗

(2.84)
CS measurei,t−1 × Scope 2 int 0.095∗

(1.66)

Controls Yes Yes Yes Yes
Industry F.E. Yes Yes Yes Yes
Year-Month F.E. Yes Yes Yes Yes
Observations 83,025 83,025 83,025 83,025
R2 0.27 0.27 0.27 0.27

This table reports pooled panel regressions of individual excess stock returns on CS measure and their
interactions with carbon emissions. In each month from July of year t to June of year t + 1, monthly returns
over the risk-free rate of individual stocks (Ri,t) are regressed on CS measure in year t − 1, carbon emissions
in year t − 1, their interactions, control variables known by the end of June in year t, and industry fixed
effects. log Scope 1 and log Scope 2 are the natural logarithm of a firm’s scope 1 and 2 greenhouse gas
emissions, respectively. Scope 1 int and Scope 2 int are a firm’s scope 1 and scope 2 carbon emission intensity,
respectively. Both emission intensity measures are winsorized at the 2.5% level. Control variables include
the natural logarithm of market capitalization (ME), the natural logarithm of book-to-market ratio (B/M ),
investment rate (I/K ), ratio of R&D to sales (R&D/Sales), return on assets (ROA), book leverage (Leverage),
tangibility (Tangibility), Whited-Wu index (WW ), stock return volatility (Volatility), stock return momentum
(Momentum), and industry dummies based on 4-digit GICS industry groups. All independent variables are
normalized to a zero mean and one standard deviation and winsorized at the 1st and 99th percentiles to reduce
the impact of outliers. The sample period is July 2006 to June 2023. Robust t-statistics based on standard
errors clustered at the firm level are reported in parentheses. *, **, and *** indicate significance at the 10%,
5%, and 1% level, respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Appendix A: Variable definitions

Table A.1
Variable definitions.

Variable Definitions Data source

CS measure The percentage of sentences identified as climate solutions to the total
number of sentences in a firm’s 10-K Item 1 Business Description.

10-K filings

Ri,t Monthly returns (t) over the risk-free rate of individual stocks (i). CRSP
PE Price-to-earnings ratio defined as market capitalization (ME) divided

by equity income (ib − dvp + txdi).
CRSP; Compustat

EM Enterprise value to EBITDA ratio defined as enterprise value (ME +
dlc+dltt+pstkrv −che) divided by operating income before depreciation
(oibdp).

CRSP; Compustat

Gross margin Gross margin defined as revenue (revt) minus cost of goods sold (cogs)
divided by revenue (revt).

Compustat

ROS Return on sales defined as net income (ni) divided by sales (sale). Compustat
ROA Return on assets defined as operating income after depreciation (oiadp)

divided by total assets (at).
Compustat

Gross margint+1→t+10 The moving-average from year t + 1 to t + 10 of Gross margin. Compustat
ROSt+1→t+10 The moving-average from year t + 1 to t + 10 of ROS. Compustat
ROAt+1→t+10 The moving-average from year t + 1 to t + 10 of ROA. Compustat
ME Market capitalization (abs(prc) × shrout). CRSP
B/M Book-to-market ratio defined as book value of equity (seq + txdb + itcb −

pstkrv) divided by market value of equity (prcc f × csho).
Compustat

I/K Investment rate defined as capital expenditures (capx) divided by prop-
erty, plant and equipment (ppent).

Compustat

R&D/Sales Ratio of R&D to sales defined as research and development expense
(xrd) divided by sales (sale).

Compustat

ROE Return on equity defined as operating income after depreciation (oiadp)
divided by book value of equity (seq + txdb + itcb − pstkrv).

Compustat

Leverage Book leverage defined as total liabilities (dltt + dlc) divided by total
assets (at).

Compustat

OL Operating leverage defined as sum of cost of goods sold (cogs) and selling,
general, and administrative expenses (xsga) divided by total assets (at).

Compustat

Tangibility Tangibility defined as property, plant and equipment (ppent) divided by
total assets (at).

Compustat

WW Whited-Wu index defined as −0.091[(ib + dp)/at] −
0.062dividend indicator + 0.021[dltt/at] − 0.044 log(at) +
0.102three-digit SIC industry sales growth − 0.035sales growth.

Compustat

Volatility Stock return volatility defined as the standard deviation of monthly stock
returns over the past 12 months.

CRSP

Momentum Stock return momentum defined as the cumulative 12-month return of a
stock, excluding the immediate past month.

CRSP

log EnvPU The natural logarithm of the mean of the 12-month moving-average
of the EnvPU index in year t. The EnvPU index represents the share
of articles about environmental policy that cover environmental policy
uncertainty.

Noailly et al. (2022)

UMC The mean of the 12-month moving-average of the unexpected climate
change concerns in year t. We measure unexpected climate change
concerns as the prediction error from a rolling AR(1) model applied to
the MCCC index controlling for the potential effects of financial-market,
energy-related, and macroeconomic variables.

Ardia et al. (2023)

UMCx UMC computed based on the themes x = BI (“Business impact”) or SD
(“Societal debate”).

Ardia et al. (2023)

Sales (SCAP) The weighted-average (based on the firm’s state-level sales) of cumulative
state-level climate plans, focusing exclusively on mitigation strategies.

Infogroup; Georgetown
Climate Center

Sales (YPCCC Regulate) The weighted-average (based on the firm’s state-level sales) of YPCCC’s
survey question on the percentage of the adult population in a given
state who support regulating CO2 as a pollutant.

Infogroup; Yale Climate
Opinion Maps

Sales (YPCCC Happen-
ing)

The weighted-average (based on the firm’s state-level sales) of YPCCC’s
survey question on the percentage of the adult population in a given
state who think global warming is happening.

Infogroup; Yale Climate
Opinion Maps

Sales (YPCCC Worried) The weighted-average (based on the firm’s state-level sales) of YPCCC’s
survey question on the percentage of the adult population in a given
state who are worried about global warming.

Infogroup; Yale Climate
Opinion Maps

IOj,i,t+1→t+4 The moving-average from quarter t + 1 to t + 4 of the institutional
ownership held by investor j in firm i.

Thomson 13F
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Internet Appendix

Figure IA.1
Time-series of environmental policy uncertainty index.
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This figure shows the time-series of the natural logarithm of the 12-month moving-average of the EnvPU index
from 2005 to 2019.
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Figure IA.2
Time-series of unexpected climate change concerns.
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This figure shows the time-series of the 12-month moving-average of the unexpected climate change concerns
from 2008 to 2022.
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Table IA.1
Portfolio characteristics.

L 2 3 4 H
CS measure 0.420 0.815 1.453 2.801 9.701
log ME 14.029 14.352 14.400 14.629 13.567
log B/M -0.573 -0.614 -0.539 -0.602 -0.577
I/K 0.167 0.163 0.159 0.160 0.162
R&D/Sales 0.006 0.009 0.009 0.010 0.018
ROA 0.068 0.073 0.069 0.073 0.042
Leverage 0.261 0.243 0.239 0.239 0.190
Tangibility 0.220 0.229 0.249 0.259 0.255
WW -0.386 -0.393 -0.396 -0.407 -0.357
Volatility 0.108 0.100 0.100 0.100 0.124
Momentum 1.061 1.077 1.082 1.082 1.022
Observations 110 107 107 107 102

This table reports the time-series average of the cross-sectional median of firm characteristics for five portfolios
sorted on CS measure relative to the 4-digit GICS industry group peers. The sample period is July 2006 to
June 2023. We rebalance portfolios at the end of every June in year t by assigning firms into quintile groups
based on CS measure in year t − 1. Firm characteristics include the natural logarithm of market capitalization
(ME), the natural logarithm of book-to-market ratio (B/M ), investment rate (I/K), ratio of R&D to sales
(R&D/Sales), return on assets (ROA), book leverage (Leverage), tangibility (Tangibility), Whited-Wu index
(WW ), stock return volatility (Volatility), and stock return momentum (Momentum). Variable definitions are
presented in Table A.1 in Appendix A.
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Table IA.2
Rolling AR(1) model regression coefficients.

Mean P25 Median P75 %+ %−

Constant 0.688 0.533 0.670 0.832 100.00% 0.00%
MCCC 0.495 0.416 0.475 0.608 100.00% 0.00%
TERM -0.060 -0.114 -0.034 0.008 0.00% 0.00%
DFLT 0.208 0.084 0.187 0.262 9.04% 0.00%
EPU -0.075 -0.164 -0.114 0.046 0.56% 25.99%
VIX -0.003 -0.012 -0.002 0.007 16.95% 2.82%
WTI 0.266 -0.058 0.203 0.615 4.52% 0.00%
PROP 0.213 0.045 0.204 0.364 0.56% 0.00%
NG -0.097 -0.261 -0.145 0.085 0.00% 9.04%
MKT 0.005 -0.001 0.007 0.015 16.38% 0.00%
SMB -0.016 -0.031 -0.017 -0.003 0.00% 31.64%
HML 0.004 -0.014 -0.002 0.025 8.47% 11.86%
RMW 0.010 -0.006 0.006 0.019 6.21% 0.00%
CMA 0.008 -0.013 0.023 0.030 2.26% 0.56%
MOM 0.002 -0.003 0.002 0.005 0.00% 0.00%

This table reports summary statistics on the regression coefficients from the rolling AR(1) model applied to the
MCCC index. The coefficients are estimated over 177 rolling windows from January 2008 to September 2022
(each window is 60 months). We report the mean, median, and the 25th and 75th percentiles of the estimates.
%+ and %− denote the percentage of time an estimate is significantly positive or negative, respectively, at the
10% significance level. MCCC is the autoregressive coefficient. Control variables include the term spread factor
(TERM ) and default spread factor (DFLT ) of Fung and Hsieh (2004), the economic policy uncertainty index
(EPU ) of Baker et al. (2016), the CBOE volatility index (VIX), the crude oil return (WTI ), the propane return
(PROP), the natural gas return (NG), the excess market return (MKT), the small-minus-big factor (SMB)
and the high-minus-low factor (HML) of Fama and French (1996), the robust-minus-weak factor (RMW )
and the conservative-minus-aggressive factor (CMA) of Fama and French (2015), and the momentum factor
(MOM ) of Carhart (1997).
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Table IA.3
Climate solutions, analyst forecast error, and transition risks.

Forecast errori,t+1 (1) (2) (3) (4) (5) (6)

CS measure -1.212 -0.103 -0.026 -0.015 -0.016 -0.016
(-0.97) (-1.48) (-0.47) (-0.24) (-0.25) (-0.26)

CS measurei,t × log EnvPU t 0.262
(0.94)

CS measurei,t × UMC t 0.534
(1.10)

CS measurei,t × Sales (SCAP)i,t 0.041
(0.79)

CS measurei,t × Sales (YPCCC Regulate)i,t -0.027
(-0.58)

CS measurei,t × Sales (YPCCC Happening)i,t -0.042
(-0.89)

CS measurei,t × Sales (YPCCC Worried)i,t -0.051
(-1.07)

Controls Yes Yes Yes Yes Yes Yes
Industry F.E. Yes Yes Yes Yes Yes Yes
Year-Month F.E. Yes Yes Yes Yes Yes Yes
Observations 9,270 8,953 8,708 7,243 7,243 7,243
R2 0.07 0.08 0.15 0.14 0.14 0.14

This table reports pooled panel regressions of analyst forecast errors on CS measure, measures of transition
risks, and their interactions, together with other control variables in year t. Forecast error is the difference
between the actual earnings per share for a given fiscal year and the median analyst consensus forecast, scaled
by the stock price at the end of the fiscal year. We measure transition risks using environmental regulatory
uncertainty, unexpected climate change concerns, and firm-level exposure to climate-related shocks. Control
variables include the natural logarithm of market capitalization (ME), the natural logarithm of book-to-market
ratio (B/M ), investment rate (I/K), ratio of R&D to sales (R&D/Sales), return on equity (ROE), book
leverage (Leverage), operating leverage (OL), tangibility (Tangibility), Whited-Wu index (WW ), stock return
volatility (Volatility), stock return momentum (Momentum), and industry dummies based on 4-digit GICS
industry groups. All independent variables (except for log EnvPU and UMC ) are normalized to a zero mean
and one standard deviation and winsorized at the 1st and 99th percentiles to reduce the impact of outliers.
The sample period is 2005 to 2023. Robust t-statistics based on standard errors clustered at the firm level
are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively.
Variable definitions are presented in Table A.1 in Appendix A.
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Table IA.4
Climate solutions, carbon abatement costs and potential, and individual stock returns.

Dep. variable: Ri,t (1) (2) (3)
CS measure (High abatement cost)i,t−1 -0.065

(-1.20)
CS measure (Low abatement cost)i,t−1 -0.163∗∗∗

(-2.99)
CS measure (High abatement potential)i,t−1 -0.123∗∗

(-2.21)
CS measure (Low abatement potential)i,t−1 -0.117∗∗

(-2.54)
CS measure (High cost per potential)i,t−1 -0.082

(-1.52)
CS measure (Low cost per potential)i,t−1 -0.151∗∗∗

(-2.87)

Controls Yes Yes Yes
Industry F.E. Yes Yes Yes
Year-Month F.E. Yes Yes Yes
Observations 152,794 152,794 152,794
R2 0.20 0.20 0.20

This table reports pooled panel regressions of individual excess stock returns on their decomposed CS measure
and other firm characteristics. We decompose CS measure into high and low categories based on two dimensions:
the carbon abatement costs and the abatement potential of the firm’s climate solutions. CS measure (High
abatement cost) (CS measure (Low abatement cost)) is the sum of climate solution topics where the net initial
cost to implement the climate solution is classified as high (low) according to the Project Drawdown 2020
report. CS measure (High abatement potential) (CS measure (Low abatement potential)) is the sum of climate
solution topics where the abatement potential of the climate solution is classified as high (low) according to the
Project Drawdown 2020 report. CS measure (High cost per potential) (CS measure (Low cost per potential))
is the sum of climate solution topics where the implementation cost per abatement potential of the climate
solution is classified as high according to the Project Drawdown 2020 report. In each month from July of
year t to June of year t + 1, monthly returns over the risk-free rate of individual stocks (Ri,t) are regressed
on decomposed CS measure in year t − 1, different sets of control variables known by the end of June in
year t, and industry fixed effects. Control variables include the natural logarithm of market capitalization
(ME), the natural logarithm of book-to-market ratio (B/M ), investment rate (I/K), ratio of R&D to sales
(R&D/Sales), return on assets (ROA), book leverage (Leverage), tangibility (Tangibility), Whited-Wu index
(WW ), stock return volatility (Volatility), stock return momentum (Momentum), and industry dummies based
on 4-digit GICS industry groups. All independent variables are normalized to a zero mean and one standard
deviation and winsorized at the 1st and 99th percentiles to reduce the impact of outliers. The sample period
is July 2006 to June 2023. Robust t-statistics based on standard errors clustered at the firm level are reported
in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable
definitions are presented in Table A.1 in Appendix A.
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Table IA.5
Climate solutions, institutional ownership, and transition risks.

Dep. variable: IOj,i,t+1→t+4 (1) (2) (3) (4) (5) (6)

Panel A: Natural arbitrageurs (mutual funds, independent investment advisors)

CS measurei,t -0.088∗ -0.011∗∗ -0.008 -0.007 -0.007 -0.007
(-1.95) (-2.41) (-1.40) (-1.45) (-1.46) (-1.46)

Sales (SCAP)i,t -0.003∗

(-1.82)
Sales (YPCCC Regulate)i,t -0.005

(-0.81)
Sales (YPCCC Happening)i,t -0.005

(-0.71)
Sales (YPCCC Worried)i,t -0.006

(-1.01)
CS measurei,t × log EnvPU t 0.018∗

(1.80)
CS measurei,t × UMC t 0.043∗∗∗

(3.56)
CS measurei,t × Sales (SCAP)i,t 0.000

(0.19)
CS measurei,t × Sales (YPCCC Regulate)i,t 0.003∗∗∗

(2.61)
CS measurei,t × Sales (YPCCC Happening)i,t 0.003∗∗∗

(2.68)
CS measurei,t × Sales (YPCCC Worried)i,t 0.003∗∗

(2.49)

Firm and Institutional Investor Controls Yes Yes Yes Yes Yes Yes
Institutional Investor F.E. Yes Yes Yes Yes Yes Yes
Firm F.E. Yes Yes Yes Yes Yes Yes
Year-Quarter F.E. Yes Yes Yes Yes Yes Yes
Observations 2,610,465 3,269,864 2,996,462 2,882,800 2,882,800 2,882,800
Adj R2 0.53 0.53 0.52 0.54 0.54 0.54

Panel B: Norm-constrained (banks, insurance companies, all other institutions)

CS measurei,t 0.046 -0.001 0.001 -0.001 -0.001 -0.001
(1.38) (-0.43) (0.52) (-0.29) (-0.29) (-0.27)

Sales (SCAP)i,t -0.001
(-1.55)

Sales (YPCCC Regulate)i,t -0.002
(-0.59)

Sales (YPCCC Happening)i,t -0.002
(-0.67)

Sales (YPCCC Worried)i,t -0.003
(-0.92)

CS measurei,t × log EnvPU t -0.010
(-1.35)

CS measurei,t × UMC t 0.011
(1.60)

CS measurei,t × Sales (SCAP)i,t -0.000
(-0.41)

CS measurei,t × Sales (YPCCC Regulate)i,t 0.001
(0.93)

CS measurei,t × Sales (YPCCC Happening)i,t 0.001
(1.25)

CS measurei,t × Sales (YPCCC Worried)i,t 0.001
(1.63)

Firm and Institutional Investor Controls Yes Yes Yes Yes Yes Yes
Institutional Investor F.E. Yes Yes Yes Yes Yes Yes
Firm F.E. Yes Yes Yes Yes Yes Yes
Year-Quarter F.E. Yes Yes Yes Yes Yes Yes
Observations 6,743,435 6,987,148 6,879,775 6,124,693 6,124,693 6,124,693
Adj R2 0.47 0.51 0.49 0.52 0.52 0.52
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Table IA.5 continued

This table reports the results of panel regressions at the investor-firm-quarter level of investor demand on CS
measure, measures of transition risks, and their interactions, together with other control variables in quarter t.
Investor demand is measured as the moving-average from quarter t + 1 to t + 4 of the institutional ownership
(obtained from 13F reports) held by investor j in firm i (IOj,i,t+1→t+4). Panel A uses the subsample of
institutions classified as mutual funds or independent investment advisors. Panel B uses the subsample of
institutions classified as banks, insurance companies, or others including pension plans, endowments, and
employee-ownership plans. We measure transition risks using environmental regulatory uncertainty, unexpected
climate change concerns, and firm-level exposure to climate-related shocks. Control variables include the
natural logarithm of market capitalization (ME), the natural logarithm of book-to-market ratio (B/M ),
investment rate (I/K ), ratio of R&D to sales (R&D/Sales), return on equity (ROE), book leverage (Leverage),
operating leverage (OL), tangibility (Tangibility), Whited-Wu index (WW ), stock return volatility (Volatility),
stock return momentum (Momentum), and investors’ portfolio size (Portfolio size) and portfolio concentration
(Portfolio concentration). All independent variables (except for log EnvPU and UMC ) are normalized to a
zero mean and one standard deviation and winsorized at the 1st and 99th percentiles to reduce the impact of
outliers. The sample period is 2005 to 2023. Robust t-statistics based on standard errors clustered at the
firm level are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively. Variable definitions are presented in Table A.1 in Appendix A.
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Table IA.6
Equal-weighted excess return and factor alpha.

L 2 3 4 H H-L
Panel A: Excess return
Excess return 0.77 0.66 0.78 0.83∗ 0.18 -0.59∗

(1.42) (1.20) (1.57) (1.68) (0.33) (-1.95)
Panel B: CAPM
αCAPM -0.27 -0.34∗ -0.22 -0.17 -0.88∗∗∗ -0.62∗∗

(-1.01) (-1.74) (-0.92) (-0.65) (-2.64) (-2.06)
Panel C: FF3
αFF3 0.01 -0.10 0.04 0.02 -0.74∗∗ -0.75∗∗∗

(0.07) (-0.56) (0.30) (0.14) (-2.36) (-2.61)
Panel D: FF4
αFF4 0.01 -0.10 0.04 0.02 -0.74∗∗ -0.75∗∗

(0.07) (-0.57) (0.31) (0.14) (-2.40) (-2.60)
Panel E: FF5
αFF5 -0.06 -0.09 -0.00 -0.01 -0.63∗∗ -0.57∗∗

(-0.34) (-0.48) (-0.01) (-0.05) (-2.08) (-2.07)
Panel F: HXZ
αHXZ 0.09 -0.02 0.09 0.09 -0.55∗ -0.65∗∗

(0.55) (-0.11) (0.54) (0.44) (-1.88) (-2.23)

This table shows equal-weighted excess returns and asset pricing factor tests for five portfolios sorted on CS
measure relative to the 4-digit GICS industry group peers. The sample period is July 2006 to June 2023. We
rebalance portfolios at the end of every June in year t by assigning firms into quintile groups based on CS
measure in year t − 1 and track the performance of the five portfolios from July of year t to June of year t + 1.
Portfolio returns are equal-weighted. We present the excess returns and alphas obtained from time-series
regressions of CS measure-sorted portfolios’ excess returns on asset pricing factors. Panel A reports the average
excess returns over the risk-free rate. Panel B includes the market factor (MKT) based on the CAPM model.
Panel C includes the Fama and French (1996) three factors (MKT, the size factor SMB, and the value factor
HML). Panel D includes the Carhart (1997) four factors (MKT, SMB, HML, and the momentum factor UMD).
Panel E includes the Fama and French (2015) five factors (MKT, SMB, HML, the profitability factor RMW,
and the investment factor CMA). Panel F includes the Hou et al. (2015) q-factors (MKT, SMB, the investment
factor I/A, and the profitability factor ROE). t-statistics based on standard errors using the Newey-West
correction for 12 lags are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1%
level, respectively.
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Table IA.7
Univariate portfolio sorting using 6-digit GICS industry.

L 2 3 4 H H-L
Panel A: Excess returns
Excess return 0.97∗∗ 0.92∗∗∗ 0.68∗ 0.82∗∗ 0.46∗ -0.51∗∗∗

(2.60) (2.91) (1.90) (2.12) (1.72) (-2.61)
Panel B: CAPM
αCAPM 0.05 0.10 -0.01 -0.19 -0.24 -0.29∗

(0.28) (0.62) (-0.02) (-1.34) (-1.46) (-1.77)
Panel C: FF3
αFF3 0.09 0.15 0.03 -0.17 -0.24 -0.34∗∗

(0.56) (0.90) (0.09) (-1.41) (-1.49) (-1.97)
Panel D: FF4
αFF4 0.10 0.15 0.03 -0.18 -0.27∗ -0.36∗∗

(0.59) (0.89) (0.08) (-1.53) (-1.68) (-2.08)
Panel E: FF5
αFF5 0.01 0.01 -0.10 -0.29∗∗ -0.34∗ -0.35∗∗

(0.07) (0.06) (-0.31) (-2.44) (-1.88) (-2.24)
Panel F: HXZ
αHXZ 0.08 0.12 -0.18 -0.26 -0.26 -0.34∗∗

(0.59) (0.65) (-1.31) (-1.15) (-1.49) (-2.31)

This table shows the average excess returns and asset pricing factor tests for five portfolios sorted on CS
measure relative to the 6-digit GICS industry peers. The sample period is July 2006 to June 2023. We
rebalance portfolios at the end of every June in year t by assigning firms into quintile groups based on CS
measure in year t − 1 and track the performance of the five portfolios from July of year t to June of year
t + 1. Portfolio returns are value-weighted by firms’ market capitalization. Panel A reports the average excess
returns over the risk-free rate. The remaining panels present the alphas obtained from time-series regressions
of CS measure-sorted portfolios’ excess returns on asset pricing factors. Panel B includes the market factor
(MKT) based on the CAPM model. Panel C includes the Fama and French (1996) three factors (MKT, the
size factor SMB, and the value factor HML). Panel D includes the Carhart (1997) four factors (MKT, SMB,
HML, and the momentum factor UMD). Panel E includes the Fama and French (2015) five factors (MKT,
SMB, HML, the profitability factor RMW, and the investment factor CMA). Panel F includes the Hou et al.
(2015) q-factors (MKT, SMB, the investment factor I/A, and the profitability factor ROE). t-statistics based
on standard errors using the Newey-West correction for 12 lags are reported in parentheses. *, **, and ***
indicate significance at the 10%, 5%, and 1% level, respectively.
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Table IA.8
Panel regressions using 6-digit GICS industry fixed effects.

Dep. variable: Ri,t (1) (2) (3)
CS measurei,t−1 -0.245∗∗∗ -0.203∗∗∗ -0.351∗∗∗

(-3.81) (-3.20) (-5.11)
log ME -0.536∗∗∗ 0.401∗∗∗

(-3.20) (3.08)
log B/M 0.113 0.111∗

(1.54) (1.66)
I/K -0.166∗∗∗ -0.272∗∗∗

(-3.00) (-4.51)
R&D/Sales 0.070 0.000

(0.96) (0.00)
ROA 0.158∗∗ 0.623∗∗∗

(2.02) (7.66)
Leverage 0.062 -0.185∗∗∗

(1.00) (-3.10)
Tangibility -0.086 -0.267∗∗∗

(-1.29) (-3.65)
WW -0.464∗∗ -0.231∗

(-2.49) (-1.67)
Volatility 2.451∗∗∗

(20.71)
Momentum -0.507∗∗∗

(-6.10)

6-digit GICS Industry F.E. Yes Yes Yes
Year-Month F.E. Yes Yes Yes
Observations 165,637 155,788 152,794
R2 0.18 0.19 0.21

This table reports pooled panel regressions of individual excess stock returns on their CS measure and other
firm characteristics using 6-digit GICS industry fixed effects. In each month from July of year t to June of year
t + 1, monthly returns over the risk-free rate of individual stocks (Ri,t) are regressed on CS measure in year
t − 1, different sets of control variables known by the end of June in year t, and 6-digit GICS industry fixed
effects. Control variables include the natural logarithm of market capitalization (ME), the natural logarithm
of book-to-market ratio (B/M ), investment rate (I/K ), ratio of R&D to sales (R&D/Sales), return on assets
(ROA), book leverage (Leverage), tangibility (Tangibility), Whited-Wu index (WW ), stock return volatility
(Volatility), stock return momentum (Momentum), and industry dummies based on 6-digit GICS industries.
All independent variables are normalized to a zero mean and one standard deviation and winsorized at the 1st
and 99th percentiles to reduce the impact of outliers. The sample period is July 2006 to June 2023. Robust
t-statistics based on standard errors clustered at the firm level are reported in parentheses. *, **, and ***
indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1
in Appendix A.
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Table IA.9
Fama-MacBeth regressions.

Dep. variable: Ri,t (1) (2) (3)
CS measurei,t−1 -0.238∗∗ -0.190∗ -0.291∗∗∗

(-2.04) (-1.87) (-2.85)
log ME -0.607∗ 0.269

(-1.95) (1.42)
log B/M -0.046 0.028

(-0.43) (0.31)
I/K -0.091 -0.218∗∗∗

(-1.15) (-2.80)
R&D/Sales 0.058 0.039

(0.52) (0.41)
ROA 0.144 0.535∗∗∗

(0.94) (4.08)
Leverage -0.101 -0.300∗∗∗

(-1.06) (-3.67)
Tangibility -0.077 -0.218∗∗

(-0.72) (-2.31)
WW -0.679∗∗ -0.255

(-2.35) (-1.38)
Volatility 1.744∗∗∗

(5.38)
Momentum -0.140

(-0.82)

Industry F.E. Yes Yes Yes
Observations 165,637 155,788 152,794
Adj R2 0.07 0.11 0.16

This table reports Fama-MacBeth regressions of individual excess stock returns on their CS measure and other
firm characteristics. We conduct cross-sectional regressions for each month from July of year t to June of year
t + 1. In each month, monthly returns over the risk-free rate of individual stocks (Ri,t) are regressed on CS
measure in year t − 1, different sets of control variables known by the end of June in year t, and industry fixed
effects. Control variables include the natural logarithm of market capitalization (ME), the natural logarithm
of book-to-market ratio (B/M ), investment rate (I/K ), ratio of R&D to sales (R&D/Sales), return on assets
(ROA), book leverage (Leverage), tangibility (Tangibility), Whited-Wu index (WW ), stock return volatility
(Volatility), stock return momentum (Momentum), and industry dummies based on 4-digit GICS industry
groups. All independent variables are normalized to a zero mean and one standard deviation and winsorized
at the 1st and 99th percentiles to reduce the impact of outliers. The sample period is July 2006 to June 2023.
t-statistics based on standard errors using the Newey-West correction for 12 lags are reported in parentheses. *,
**, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented
in Table A.1 in Appendix A.
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Table IA.10
Panel regressions with alternative controls for innovation.

Dep. variable: Ri,t (1) (2) (3) (4)

CS measurei,t−1 -0.416∗∗∗ -0.363∗∗∗ -0.364∗∗∗ -0.459∗∗∗

(-6.46) (-5.57) (-5.92) (-6.10)
Knowledge capital/Sales 0.004

(0.05)
RDC/Sales 0.077

(0.94)
Trade secret -0.209∗∗

(-2.57)
RETech stock -0.022

(-0.47)
log ME 0.486∗∗∗ 0.254∗ 0.417∗∗∗ 0.335∗∗

(4.07) (1.94) (3.44) (2.16)
log B/M 0.025 0.029 0.086 0.102

(0.38) (0.40) (1.35) (1.35)
I/K -0.257∗∗∗ -0.261∗∗∗ -0.279∗∗∗ -0.244∗∗∗

(-4.19) (-4.29) (-4.52) (-3.64)
ROA 0.629∗∗∗ 0.618∗∗∗ 0.610∗∗∗ 0.706∗∗∗

(7.93) (6.34) (8.65) (6.88)
Leverage -0.218∗∗∗ -0.202∗∗∗ -0.161∗∗∗ -0.156∗∗

(-3.43) (-3.22) (-2.79) (-2.04)
Tangibility -0.296∗∗∗ -0.326∗∗∗ -0.247∗∗∗ -0.363∗∗∗

(-3.85) (-4.24) (-3.63) (-3.84)
WW -0.140 -0.409∗∗∗ -0.200 -0.176

(-1.16) (-3.05) (-1.58) (-1.08)
Volatility 2.457∗∗∗ 2.429∗∗∗ 2.411∗∗∗ 2.729∗∗∗

(17.84) (20.13) (20.10) (16.35)
Momentum -0.517∗∗∗ -0.494∗∗∗ -0.492∗∗∗ -0.521∗∗∗

(-6.57) (-5.80) (-5.96) (-5.12)

Industry F.E. Yes Yes Yes Yes
Year-Month F.E. Yes Yes Yes Yes
Observations 130,151 131,402 151,993 96,898
R2 0.21 0.22 0.21 0.22

This table reports pooled panel regressions of individual excess stock returns on their CS measure and other
firm characteristics while controlling for alternative measures of innovation. In each month from July of year
t to June of year t + 1, monthly returns over the risk-free rate of individual stocks (Ri,t) are regressed on
CS measure in year t − 1, measures of innovation in year t, control variables known by the end of June in
year t, and industry fixed effects. We include four measures of innovation. Knowledge capital is derived from
industry-level R&D depreciation rates using the model by Ewens et al. (2024). This measure represents the
capital value of R&D and covers the period from 2005 to 2019. We scale Knowledge capital by sales. RDC
is calculated based on industry-year regressions of R&D investment and future revenues using the model by
Iqbal et al. (2024). This measure also reflects the capital value of R&D and spans from 2005 to 2022. We
scale RDC by sales. Trade secret is a dummy variable indicating whether a firm’s 10-K filings in a given year
include references to trade secrets, and zero otherwise, following the approach of Glaeser (2018). The sample
period is from 2005 to 2023. RETech stock represents the average RETech metric from Bowen et al. (2023)
across a firm’s patent applications over the prior five years, with a 20% yearly depreciation rate applied and
scaled by the number of patents. Higher (lower) levels of RETech correspond to patents in technology areas
that are likely to substitute (complement) existing technologies. By construction, RETech stock is equal to
zero when firms have no patent applications over the prior five years. Thus, we include a zero-patent dummy
as a control variable. The sample period is from 2005 to 2019. Control variables include the natural logarithm
of market capitalization (ME), the natural logarithm of book-to-market ratio (B/M ), investment rate (I/K ),
return on assets (ROA), book leverage (Leverage), tangibility (Tangibility), Whited-Wu index (WW ), stock
return volatility (Volatility), stock return momentum (Momentum), and industry dummies based on 4-digit
GICS industry groups. All independent variables (except for Trade secret) are normalized to a zero mean and
one standard deviation and winsorized at the 1st and 99th percentiles to reduce the impact of outliers. Robust
t-statistics based on standard errors clustered at the firm level are reported in parentheses. *, **, and ***
indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in Table A.1
in Appendix A.
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Table IA.11
Panel regressions with controls for greenness.

Sample period: 2007–2023 2012–2023
Dep. variable: Ri,t (1) (2)
CS measurei,t−1 -0.167∗∗ -0.145∗

(-2.21) (-1.86)
Greennessi,t−1 0.134∗∗∗ 0.105∗∗

(3.11) (2.21)
log ME 0.185 0.236

(1.07) (1.31)
log B/M -0.040 -0.059

(-0.62) (-0.86)
I/K -0.214∗∗∗ -0.217∗∗

(-2.62) (-2.51)
R&D/Sales 0.031 0.005

(0.38) (0.06)
ROA 0.535∗∗∗ 0.494∗∗∗

(4.04) (3.46)
Leverage -0.060 -0.075

(-0.97) (-1.16)
Tangibility -0.033 -0.061

(-0.45) (-0.78)
WW -0.184 -0.181

(-0.97) (-0.92)
Volatility 1.930∗∗∗ 1.970∗∗∗

(12.62) (11.69)
Momentum -0.124 -0.088

(-0.95) (-0.63)

Industry F.E. Yes Yes
Year-Month F.E. Yes Yes
Observations 71,488 62,276
R2 0.27 0.26

This table reports pooled panel regressions of individual excess stock returns on their CS measure and other
firm characteristics while controlling for greenness. In each month from July of year t to June of year t + 1,
monthly returns over the risk-free rate of individual stocks (Ri,t) are regressed on CS measure in year t − 1,
greenness in year t − 1, control variables known by the end of June in year t, and industry fixed effects. We
measure a firm’s greenness following Equation (9). Control variables include the natural logarithm of market
capitalization (ME), the natural logarithm of book-to-market ratio (B/M ), investment rate (I/K), ratio
of R&D to sales (R&D/Sales), return on assets (ROA), book leverage (Leverage), tangibility (Tangibility),
Whited-Wu index (WW ), stock return volatility (Volatility), stock return momentum (Momentum), and
industry dummies based on 4-digit GICS industry groups. All independent variables are normalized to a
zero mean and one standard deviation and winsorized at the 1st and 99th percentiles to reduce the impact of
outliers. Robust t-statistics based on standard errors clustered at the firm level are reported in parentheses. *,
**, and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented
in Table A.1 in Appendix A.

71



Table IA.12
Factor alphas.

L 2 3 4 H H-L
Panel A: CAPM
αCAPM 0.80∗∗∗ 0.81∗∗∗ 0.85∗∗∗ 0.79∗∗∗ 0.75∗∗∗ -0.06∗

(6.20) (6.20) (6.28) (5.71) (6.21) (-1.93)
Panel B: FF3
αFF3 0.80∗∗∗ 0.80∗∗∗ 0.84∗∗∗ 0.78∗∗∗ 0.74∗∗∗ -0.06∗∗

(6.43) (6.41) (6.46) (5.95) (6.46) (-2.06)
Panel C: FF4
αFF4 0.81∗∗∗ 0.81∗∗∗ 0.85∗∗∗ 0.79∗∗∗ 0.75∗∗∗ -0.06∗∗

(6.71) (6.69) (6.71) (6.22) (6.66) (-2.12)
Panel D: FF5
αFF5 0.77∗∗∗ 0.77∗∗∗ 0.81∗∗∗ 0.75∗∗∗ 0.71∗∗∗ -0.06∗∗

(6.50) (6.41) (6.50) (6.00) (6.48) (-2.21)
Panel E: HXZ
αHXZ 0.82∗∗∗ 0.82∗∗∗ 0.86∗∗∗ 0.80∗∗∗ 0.76∗∗∗ -0.06∗∗

(6.05) (6.03) (6.08) (5.55) (6.09) (-2.03)

This table uses stock returns calculated using the generalized lower bounds of Chabi-Yo et al. (2023) and shows
asset pricing factor tests for five portfolios sorted on CS measure relative to the 4-digit GICS industry group
peers. The sample period is July 2006 to June 2023. We rebalance portfolios at the end of every June in year
t by assigning firms into quintile groups based on CS measure in year t − 1 and track the performance of the
five portfolios from July of year t to June of year t + 1. Portfolio returns are value-weighted by firms’ market
capitalization. We present the alphas obtained from time-series regressions of CS measure-sorted portfolios’
returns on asset pricing factors. Panel A includes the market factor (MKT) based on the CAPM model. Panel
B includes the Fama and French (1996) three factors (MKT, the size factor SMB, and the value factor HML).
Panel C includes the Carhart (1997) four factors (MKT, SMB, HML, and the momentum factor UMD). Panel
D includes the Fama and French (2015) five factors (MKT, SMB, HML, the profitability factor RMW, and the
investment factor CMA). Panel E includes the Hou et al. (2015) q-factors (MKT, SMB, the investment factor
I/A, and the profitability factor ROE). t-statistics based on standard errors using the Newey-West correction
for 12 lags are reported in parentheses. *, **, and *** indicate significance at the 10%, 5%, and 1% level,
respectively.
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Table IA.13
Panel regressions using option-implied expected returns.

Dep. variable: GLBi,t (1) (2)
CS measurei,t−1 -0.027∗∗∗ -0.019∗∗

(-2.86) (-2.03)
log ME -0.397∗∗∗ -0.398∗∗∗

(-18.92) (-17.70)
log B/M -0.012 -0.004

(-1.10) (-0.38)
I/K -0.025∗∗∗ -0.024∗∗

(-2.63) (-2.52)
R&D/Sales 0.002 -0.001

(0.15) (-0.07)
ROA 0.016 -0.000

(1.32) (-0.04)
Leverage -0.006 0.004

(-0.56) (0.40)
Tangibility -0.000 0.005

(-0.02) (0.34)
WW -0.099∗∗∗ -0.073∗∗∗

(-5.05) (-3.70)
Volatility -0.079∗∗∗

(-5.78)
Momentum -0.038∗∗∗

(-5.75)

Industry F.E. Yes Yes
Year-Month F.E. Yes Yes
Observations 122,473 121,995
R2 0.54 0.55

This table reports pooled panel regressions of individual expected stock returns calculated using the generalized
lower bounds of Chabi-Yo et al. (2023) on their CS measure and other firm characteristics. In each month
from July of year t to June of year t + 1, expected returns of individual stocks (Ri,t) are regressed on CS
measure in year t − 1, different sets of control variables known by the end of June in year t, and industry fixed
effects. Control variables include the natural logarithm of market capitalization (ME), the natural logarithm
of book-to-market ratio (B/M ), investment rate (I/K ), ratio of R&D to sales (R&D/Sales), return on assets
(ROA), book leverage (Leverage), tangibility (Tangibility), Whited-Wu index (WW ), stock return volatility
(Volatility), stock return momentum (Momentum), and industry dummies based on 4-digit GICS industry
groups. All independent variables are normalized to a zero mean and one standard deviation and winsorized
at the 1st and 99th percentiles to reduce the impact of outliers. The sample period is July 2006 to June 2023.
Robust t-statistics based on standard errors clustered at the firm level are reported in parentheses. *, **,
and *** indicate significance at the 10%, 5%, and 1% level, respectively. Variable definitions are presented in
Table A.1 in Appendix A.
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Extract from Lu et al. (2024) on the CS measure creation
Supplementary Note 1: Climate Solutions GPT Model
Data and Sample
Our primary data source is the SEC’s EDGAR database, offering public access to 10K filings.
A 10K filing is an annual report filed by publicly traded companies in the United States. As a
regulatory document, filed with the Securities and Exchange Commission (SEC), companies
are required to present factual information, which makes the report more reliable than other
sources like sustainability reports and earnings conference calls. The report contains detailed
information about a company’s overall financial health, business practices, and strategy.
Climate solutions are related to the product offering of companies therefore, for our analysis,
we specifically targeted the business descriptions found in Part I, Item 1 (Business) of these
filings.

Our sample starts with the universe of firms that report SEC 10-K filing in the EDGAR
database from fiscal year 2005 to 2022. Our sample period begins in 2005 when the structure
of 10-K is more stable. Starting 2005, the Securities and Exchange Commission (SEC) requires
firms to disclose the most significant risks in Item 1A (Securities Offering Reform, Item 503(c)
of Regulation S-K).

To ensure consistent firm identifiers over time, we use the WRDS-CIK linking tables to
map the CIK in 10-K filings to GVKEY in Compustat (Hoberg & Phillips, 2016). This linking
table allows us to match firms in Compustat to its historical CIK that could be different from
the latest CIK due to firm name and structure changes (e.g., merger and acquisition, spin-offs,
and bankruptcies). For example, General Motors filed for bankruptcy in 2009 and received a
new CIK following that year. We are able to assign both CIK before and after the bankruptcy
to the same GVKEY. We keep firm-year observations that are matched to Compustat as
the majority of the firms not matched are funds, which we exclude together with financial
institutions since we focus on climate solution products and services, but not the financing of
them. Supplementary Table A1 shows the sample composition, where 37% of observations are
excluded as a result of this requirement. We then use the Extractor API (Python) from the
SEC API to retrieve the raw text of the Item 1 business description section of the 10-K filings.
This process results in the loss of around 1% of observations where the API was not able to
identify Item 1 or that the identified Item 1 contains fewer than 100 words.

We focus on industries that are pivotal to climate solutions, where our LLM is likely
more accurate in identifying climate solutions. Based on reviewing Project Drawdown, we
keep 13 (out of 25) GICS industry groups that are central to climate solutions: Energy,
Materials, Capital Goods, Transportation, Automobiles & Components, Consumer Durables
& Apparel, Food Beverage & Tobacco, Household & Personal Products, Technology Hardware
& Equipment, Semiconductors & Semiconductor Equipment, Utilities, Equity Real Estate
Investment Trusts (REITs), Real Estate Management & Development. This restriction reduces
the sample by 35%. This process results in a final sample of 39,712 observations for 4,485
firms for fiscal years 2005 to 2022.
Climate Solutions Identification
The basis of our metric is a sentence-level binary classifier, designed to detect the presence
of climate solutions within the text. This model was specifically developed for sentence-level
classification (climate solution or not) due to two primary considerations. First, a sentence, as
the fundamental unit of text, presents a clear and concise element for labelers to assess with
high accuracy. Second, this method guarantees the precise extraction and identification of
text segments specifically relevant to climate solutions.
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Supplementary Table 1A: Sample Composition

Sample Composition
Sample Size Ratio

Total 10K from edgar 2005-2022 146,718
Firms not matched to Compustat (53,894) 37%
Firms unable to extract item 1 (1,575) 1%
Firms not in relevant industries (51,537) 35%

Final sample 39,712

This table shows the sample composition.

Defining Climate Solutions
We define climate solutions as products and services that develop or deploy new technologies
in a transition to a low-carbon economy. We identify climate solution technologies based on
guidance from the Drawdown Project. The Drawdown Project contains a list of technologies
that can reduce greenhouse gases in the atmosphere, and are compiled by a network of scientists
and researchers.

While the Drawdown Project provides guidance on what decarbonization technology is
considered a climate solution, when we label sentences, we need to decide for which firms the
climate solution is a relevant product or service. Consider the following example with three
companies involved in the climate solution technology of sustainable aviation fuel (SAF): an
energy producer provides SAF to airlines to reduce its emissions and the airline sells flight
tickets with lower carbon footprint to a consulting firm. We consider SAF a relevant climate
solution for the energy producer since it is the developer of the technology. We also consider
SAF a relevant climate solution for the airline since it deploys the technology. However, we
do not consider SAF a relevant climate solution for the consulting firm since it engages in
business as usual and neither develops nor deploys the climate solution technology.
Creating the training dataset
In the full dataset of almost nine million sentences from 10-K Item 1, only some of them
pertain to climate solutions. Therefore, it is crucial to focus on the most representative
sentences for efficient training of the model. We select sentences as our training dataset in two
steps. In the first step, we select a sample of 100 sentences from each of the 13 industry groups
based on sentences most confusing to the model using a one-shot BART model from Setfit.
In the one-shot BART model, we predict whether a sentence is a climate solution sentence
based on its alignment with Project Drawdown’s Solutions Library. By using a BART model
instead of randomly selecting sentences, we also ensure a better balance between positive and
negative sentences. These chosen sentences go through a labeling process, which we describe
in more detail in Supplementary Note 2.

In the second step, we conduct an iterative process to add sentences to the training set
through an active learning approach. Active learning is a machine learning technique where
the model identifies and selects specific data points for which it requires additional information
(labels or annotations) to improve its performance. The technique often involves selecting
data points where the model is uncertain. Thus, we identify common types of sentences that
our model struggles to interpret or predicts as climate solutions (e.g., sentences considering
climate regulations), and we include additional sentences on these confusing areas to further
enhance the model. The objective of active learning is to select the data points from which the
model learns better, aiming to improve learning efficiency and performance with less labeled
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data. This approach is particularly useful in scenarios where labeling data is expensive or
time-consuming. By focusing on instances where the model’s prediction is uncertain, active
learning seeks to minimize the amount of required training data, thereby reducing costs and
improving the model’s accuracy and generalization capabilities.

We use a pre-trained ClimateBERT machine learning model as the base model for the
active learning processes (Webersinke et al., 2022). A BERT model has the ability to capture
rich contextual information, thus identifying and understanding ambiguous or uncertain cases.
This capability enhances the effectiveness of the active learning process by ensuring that
the most informative and challenging examples are selected for labeling. The ClimateBERT
model’s relatively compact size (in its number of weights/parameters) offers the advantage of
requiring minimal computational power, enabling comparably quick fine-tuning. To mitigate
the drawback of a smaller size model and less context encoded in its weights, the authors
of ClimateBERT pre-trained it further on over 2 million paragraphs of climate-related texts
to better respond to the domain-specific queries. Like any other binary classification model,
ClimateBERT returns a logit, which can be transformed back to probabilities using a logistic
function. Based on this output, we conduct the following iterative process:

1. Fine-tuned the model with the data.

2. Choose a decision boundary, that guarantees the highest F1 score.

3. Carefully examine the sentences whose predictions are close to the decision boundary.

4. Use these to guide the addition of new sentences into the dataset.

We underwent 8 rounds of active learning and generating training sets, as listed below.
For each round, we identify the type of sentences causing confusion to the model and add
around 200 sentences to the training set.

1. Sentences that contain “battery” or “electric” but are not related to climate solutions,
such as those containing electric toothbrushes.

2. Sentences that describe climate policies or regulations faced by the firm, which does not
mean the firm has products or services on climate solutions.

3. Sentences associated with buying carbon credits (e.g., renewable energy credits), but
not the creation of carbon credits.

4. Sentences in the building/construction industry that likely needed more examples to
properly inform the classifier’s decision boundary, specifically when it relates to green
buildings and LEED certifications.

5. Sentences containing ethanol, as the model initially does not consider most mentions of
ethanol production as climate solution.

6. Sentences where the prefix ’bio’ is present, where the model initially classifies as climate
solutions but many are not, such as BiOmega-3.

7. Sentences containing generic agricultural products are sometimes misclassified as climate
solutions, whereas sentences related to nutrient management and plant-based protein
are climate solutions.

8. Sentences containing supporting products to other climate solutions are sometimes
not classified as climate solutions. For example, products that enable existing cars to
transition to a less carbon-intensive fuel.
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This process results in a final training set of 3,508 sentences. The training set statistics are
presented in Supplementary Table A2. The size of our dataset is benchmarked to Stammbach
et al., 2023, where they annotated 3000 sentences to fine-tune transformer models for climate
claim detection (Stammbach, Webersinke, Bingler, Kraus, & Leippold, 2023). Additionally, we
evaluate the sufficiency of our training set size by examining how model performance changes
as we increase the size of the training dataset. Specifically, we keep a held-out dataset using
20% of the training set, and examine the model performance on this held-out set when we
train a GPT-3.5-turbo-1106 model using 0%, 20%, 40%, 60%, and 80% of the training set.
Figure A2 shows the largest increase in model performance when the model is fine-tuned
with 20% of the training set, compared to the non-fine-tuned model when 0% training data is
provided. This increase reflects the value of fine-tuning the GPT model for the specific task of
identifying climate solutions sentences. As the proportion of training set increases from 20%
to 80%, we do not observe large improvements in model performance, which provides comfort
that our training set is sufficient and that we do not anticipate large improvements in model
performance if we were to annotate additional sentences.

Supplementary Table A2: Composition of the training data

Industry Name Count in Number of % of Count Overall % of the % of
Training Set Positives Positives Training Set Overall Set

Automobiles and Components 291 168 0.577 180,942 8.640 1.984
Capital Goods 405 139 0.343 1,238,834 12.025 13.588
Consumer Durables and Apparel 178 45 0.253 494,283 5.285 5.421
Energy 181 74 0.409 1,769,351 5.374 19.406
Equity Real Estate Investment Trusts 188 57 0.303 492,869 5.582 5.406
Food, Beverage and Tobacco 451 163 0.361 412,178 13.391 4.521
Household and Personal Products 146 18 0.123 220,420 4.335 2.418
Materials 301 71 0.236 896,885 8.937 9.837
Real Estate Management
and Development 134 40 0.299 492,869 3.979 5.406
Semiconductors and
Semiconductor Equipment 178 69 0.388 460,569 5.285 5.052
Technology Hardware and Equipment 158 33 0.209 917,277 4.691 10.061
Transportation 184 46 0.250 313,834 5.463 3.442
Utilities 573 331 0.578 1,227,056 17.013 13.458

Supplementary Figure A2: Model Performance relative to Training Size
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Training Methodology and Model Selection
We use the labeled training set to fine-tune a GPT-3.5-turbo-1106 specialized at labeling
climate solutions sentences. Fine-tuning is the process of further training a pre-trained GPT
model on a specific data and involves adjusting the model’s weights to better capture the
language and concepts related to climate solutions. GPT algorithm is based on a neural
network architecture that depends on weights, which are the parameters that are learned during
training. The weights determine the strength of connections between neurons in different
layers of the model. Adjusting these weights changes the way the model processes input data
and generates output. Fine-tuning adjusts the model’s weights so it can better understand
and generate climate-specific terms and phrases, such as “renewable energy,” “plant-based
protein,” and “cogeneration.” Through this process, the model learns the contextual usage
of these terms within climate-related discussions, improving its ability to generate relevant
and coherent text specific to climate solutions. The fine-tuning hyperparameters for our
GPT-based model are based on recommended defaults, with epochs set to 3, batch size to 7,
and a learning rate multiplier of 2.

We employ 5-fold cross-validation to assess our model, optimizing the use of our labeled
dataset. This method ensures comprehensive evaluation by partitioning the dataset into five
subsets, where each subset serves as a test set while the remaining are used for training,
iteratively. For each fold, we designate 20% of the labeled dataset as a holdout set for testing,
while the remaining 80% is used to fine-tune a GPT-3.5-turbo-1106 model. The trained model
is then evaluated on the held-out 20%, and this process is repeated across all five folds.

The model demonstrates an overall accuracy of 84.09%, with a standard deviation of 1.93%
between folds, indicating consistency in performance across different subsets. Moreover, we
report an F1 score of 79% with a standard deviation of 2% between the folds. The F1 score,
being the harmonic mean of precision and recall, provides a balanced measure of the model’s
accuracy, particularly valuable in the context of binary classification. It is especially pertinent
for evaluating performance in imbalanced datasets, where traditional accuracy metrics may
not fully capture the effectiveness of the model in distinguishing between classes.

We display the GPT prompt below and the detailed model performance by industry in
Supplementary Table A3.

Listing 1: GPT finetuning prompt
system_message = ‘‘You are a chatbot with expertise in

environmental regulations and climate change mitigation
strategies . Your function is to meticulously analyze
sections of regulatory documents , 10k filings , to identify
the presence of proposed climate solutions . Based on the
guidelines , assess whether the company is implementing
specific technologies or practices contributing to a low -
carbon economy . Look for whether there is a clear
indication of the company ’s investment or future investment

in climate solutions or the sentence implies a reduction
in carbon emissions through the company ’s products or
services . Generic , vague , or general statements about
climate change should classified as no.’’
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Supplementary Table A3: Model Evaluation by Industry

GPT 3.5 FT ClimateBERT FT

Index F1 Score Accuracy (%) F1 Score Accuracy (%)
Automobiles and Components 0.845 81.787 0.836 80.756
Utilities 0.839 81.501 0.839 80.279
Real Estate Management and Development 0.835 90.299 0.706 81.343
Energy 0.833 86.740 0.833 85.635
Food, Beverage and Tobacco 0.793 83.814 0.799 84.257
Capital Goods 0.789 84.938 0.772 82.963
Consumer Durables and Apparel 0.776 87.640 0.729 85.393
Technology Hardware and Equipment 0.727 88.608 0.646 85.443
Semiconductors and Semiconductor Equipment 0.724 76.405 0.723 75.843
Transportation 0.722 85.326 0.667 82.065
Materials 0.699 85.382 0.649 82.060
Equity Real Estate Investment Trusts 0.694 80.319 0.625 74.468
Household and Personal Products 0.636 89.041 0.528 82.877
Overall 0.795 84.090 0.776 81.984

In the process of selecting an appropriate LLM, we considered several aspects:

• Cost: The financial implications of model utilization vary significantly depending on
the deployment strategy. For models operated on private infrastructure, the primary
cost consideration involves the expenses associated with cloud services. Alternatively,
when employing a proprietary model accessible via API, the cost per token becomes a
pivotal factor. Opting for the latter, our strategy focused on crafting concise prompts to
minimize expenses without compromising the model’s effectiveness.

• Latency: The response time of models can range widely, influenced by factors such
as model size, architectural complexity, and the computational power of the hosting
environment. This variance is a critical consideration, especially in scenarios requiring
rapid iterative testing and feedback. Although larger, more computationally intensive
models may offer superior performance, selecting a model that balances response time
and computational demands was essential for our workflow. In our approach, we utilized
both, the efficiency of climateBERT to rapidly iterate over training examples and then
the large context of a GPT model for the final classification.

• Performance for Specific Tasks: The adaptability of modern LLMs to a broad
spectrum of tasks is remarkable, often eliminating the need for fine-tuning or complex
prompting strategies for general applications. However, specialized tasks may necessitate
tailored adjustments or fine-tuning to achieve optimal results. The trade-off between
using generalized versus specialized language models for niche domains has been explored
in research, such as in medicine (Nori et al., 2023) and finance (Li et al., 2023).

Given these considerations, our choice of the final model was informed by a holistic
assessment of primarily task-specific performance, cost, and latency. Despite ClimateBERT’s
suitability for our initial training needs, the superior performance, expansive knowledge, and
versatility of GPT were sufficient reasons to be our choice of model for the final classification
phase. Looking at the overall accuracy, the fine-tuned GPT-3.5 is at 84.09%, which is higher
than that of the fine-tuned ClimateBERT’s accuracy of 81.98% as seen in Supplementary Table
1C. We select the ClimateBERT model with the highest F1 score by conducting a grid search
over key hyperparameters, including learning rates (5e-05, 2e-05, 1e-05, 5e-06), epsilons (1e-08,
1e-07), and dropout probabilities (0.1, 0.2, 0.3). The optimal model for which our accuracy
and F1 scores are based on has a learning rate of 5e-05, epsilon of 1e-08, and dropout of 0.1.
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In untabulated analysis, we also explore three alternative models, DistilRoBERTa, RoBERTa,
and DeBERTa (He, Liu, Gao, & Chen, 2020; Liu et al., 2019; Sanh, Debut, Chaumond, &
Wolf, 2019), with the same parameters as the ClimateBERT model. Across these models, the
F1 and accuracy rates are below the ClimateBERT model, which has a performance below
the fine-tuned GPT we use.

In particular, the fine-tuned GPT-3.5 outperforms the fine-tuned ClimateBERT significantly
in correctly identifying climate solutions sentences in industries with fewer climate solutions,
such as in Equity Real Estate Investment Trusts and Household and Personal Products. In
summary, by fine-tuning GPT-3.5-turbo-1106 with a targeted training set, we achieve a balance
between cost efficiency and performance.

A challenge with utilizing GPT-3.5 is its non-deterministic behavior. Non-deterministic
behavior in GPT refers to the variability in its outputs even when given the same input multiple
times. This behavior arises from several factors inherent to the design and operation of the
model. One key factor is temperature, which controls the randomness of predictions. A higher
temperature value (e.g., 1.0) produces more random outputs, while a lower temperature (e.g.,
0.1) makes the output more deterministic and focused on high-probability tokens (refer to the
words or sub-words that the model predicts are most likely to come next in a given sequence).
Therefore, to reduce variability in predictions, we set the temperature hyper-parameter to
0.1. Additionally, to examine the potential variability in this non-deterministic behavior, we
randomly selected 1,000 sentences from outside the training set and apply the fine-tuned GPT
model five times. The maximum discrepancy observed between any two columns was 1 row.
Supplementary Note 2: Climate Solutions Labeling
To train our GPT climate solutions model, we label 3,508 sentences as either climate solution
sentences or not. For our annotation procedure, we implement the following general rules
referencing Webersinke et al. (2022). The annotators have to determine whether a sentence is
related to climate solutions. Annotators are asked to apply common sense, e.g., when a given
sentence might not provide all the context, but the context might seem obvious. Moreover,
annotators are informed that each annotation should be a 0-1 decision. Hence, if an annotator
is 70% certain, it is rounded up to 100%. Two researchers annotate the same tasks to obtain
some measure of dispersion. In case of a close verdict or a tie between the annotators, the
authors of this paper discuss the sentence in depth before reaching an agreement. Out of 3,508
sentences, annotators agreed on 2,905, while the remaining sentences had disagreements. To
assess the degree of annotator agreement, we calculate Cohen’s Kappa, which is 0.6653 with a
95% confidence interval of 0.64 to 0.6907. This indicates a substantial level of agreement in
the labeling process.

We define climate solutions as products and services that develop or deploy new technologies
in a transition to a low-carbon economy. As a general rule, we determine that just discussing
climate change or the environment is not sufficient, the sentence should mention specific
climate solutions, such as renewable energy, electrification of transportation and processes,
battery technology, new agricultural practices, or plant-based protein alternatives to meat.
When in doubt, we refer to the list of climate solutions technologies listed in Project Drawdown.
Below, we provide some examples.
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Sentence Label Reason
Our industry experience, the performance of
our transit buses, and compelling total cost
of ownership has helped make us the leader
in the U.S. electric transit bus market.

1 The firm is creating electric transit
bus, which, as an electric vehicle,
is a climate solution.

We believe we have a responsibility and op-
portunity to play a role in the global economic
transition to net zero emissions.

0 This is a generic statement with-
out referencing specific products
or investments, as compared to
the previous sentence.

Our expanding corporate offices in Los Ange-
les, California are being designed and devel-
oped to qualify for LEED certification.

0 This is about their current opera-
tions, and not a product they are
developing.

Many of our products meet the requirements
for the awarding of LEED credits, and we are
continuing to develop new products, systems
and services to address market demand for
products that enable construction of buildings
that require fewer natural resources to build,
operate and maintain.

1 This is similar to the last sentence
in mentioning the LEED certifica-
tion, but is used with respect to a
product, and therefore qualifies.

The first class of QFs includes energy pro-
ducers that generate power using renewable
energy sources such as wind, solar, geother-
mal, hydro, biomass or waste fuels.

0 This reads as part of a regulation
for Qualifying Facilities, and not
a product or any indication of a
company’s actions.
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